Использовать регрессию по вариантудля данных из таблицы 1 по варианту(таблица 10),самостоятельно сформулировав задачу. Оценить, насколько хорошо онаподходит для решения сформулированной вамизадачи.
*`Pandas` - библиотека, которая позволяет работать с двумерными и многомерными таблицами, строить сводные таблицы, выделять колонки, использовать фильтры по параметрам, выполнять группировку по параметрам, запускать функции (сложение, нахождение медианы, среднего, минимального, максимального значений), объединять таблицы и многое другое
*`Sklearn` - предоставляет ряд инструментов для моделирования данных, включая классификацию, регрессию, кластеризацию и уменьшение размерности.
*`Matplotlib` - это библиотека для визуализации данных в Python, предоставляющая инструменты для создания статических, анимированных и интерактивных графиков и диаграмм.
4. Обучение и прогнозирование модели, применение алгоритма гребневой регрессии.
5. Вычисление метрик (среднеквадратичная ошибка и коэффициент детерминации).
6. Визуализация данных.
График:
![myplot.png](myplot.png)
### Вывод
* Среднеквадратичная ошибка = 0.179 (низкий), что говорит нам о том, что тестовые и предсказанные значения получились довольно точными.
* Коэффициент детерминации = 0.01, что означает, что только 1% дисперсии зависимой переменной может быть объяснено моделью. Это очень низкое значение, что указывает на то, что модель не очень хорошо объясняет данные.