IIS_2023_1/arutunyan_dmitry_lab_4/main.py

97 lines
5.8 KiB
Python
Raw Normal View History

2023-10-16 01:19:01 +04:00
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.cluster import DBSCAN
from sklearn.linear_model import LinearRegression
filein = "P:\\ULSTU\\ИИС\\Datasets\\heart_2020_norm.csv"
fileout = "P:\\ULSTU\\ИИС\\Datasets\\heart_2020_classified.csv"
# Метод устранения шумов и кластеризации данных алгоритмом DBSCAN
def dbscan():
df = pd.read_csv(filein, sep=',').iloc[0:10000] # Считывание датасета
x = df.drop("HeartDisease", axis=1) # Определение кластеризуемых параметров
eps_opt = (x.max().values.mean() + x.min().values.mean()) / 2 # Рассчёт опционального радиуса окрестности методом средней плотности
developed_data = [] # Подбор значения минимального количества точек в окрестности
for i in range(len(x)): # - Начинаем с одной точки
if i == 0:
continue # - Увеличиваем значение кол-ва точек на 1
dbscan = DBSCAN(eps=eps_opt, min_samples=i) # - Обучаем модель и получаем массив кластеров
clusters = dbscan.fit_predict(x.values)
if len(set(clusters)) <= 7: # - Прекращаем увеличивать значение точек, если кол-во кластеров уменьшилось до требуемого
developed_data = clusters
break
if list(clusters).count(-1) / len(clusters) >= 0.1: # - Или если "шум" превышает 10% от данных
developed_data = clusters
break
make_plot(x, developed_data)
df["DBSCAN"] = developed_data
df.to_csv(fileout, index=False) # Сохраняем полученные кластеры как доп. столбец датасета
# Метод оценки эффективности кластеризации DBSCAN
def linear_reg(): # Создаём две выборки данных
df = pd.read_csv(fileout, sep=',') # В 1й избавляемся от "шумов" и используем столбец кластеров как признак
df_mod = df.loc[df["DBSCAN"] != -1]
x_train_mod = df_mod.drop("HeartDisease", axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train_mod = df_mod["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test_mod = df_mod.drop("HeartDisease", axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test_mod = df_mod["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
# Во 2й оставляем обычные данные
x_train = df.drop(["HeartDisease", "DBSCAN"], axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df.drop(["HeartDisease", "DBSCAN"], axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
lr_mod = LinearRegression() # Обучаем модель без "шума" и с признаком кластеров
lr_mod.fit(x_train_mod.values, y_train_mod.values)
y_mod_pred = lr_mod.predict(x_test_mod.values)
err = pred_errors(y_mod_pred, y_test_mod.values)
make_plots(y_test_mod.values, y_mod_pred, err[0], err[1], "Регрессия с кластеризацией dbscan")
lr = LinearRegression() # Обучаем модель на исходных данных
lr.fit(x_train.values, y_train.values)
y_pred = lr.predict(x_test.values)
err = pred_errors(y_pred, y_test.values)
make_plots(y_test.values, y_pred, err[0], err[1], "Чистая линейная регрессия")
# Метод рассчёта ошибок
def pred_errors(y_predict, y_test):
mid_square = np.round(np.sqrt(metrics.mean_squared_error(y_test, y_predict)),3) # Рассчёт среднеквадратичной ошибки модели
det_kp = np.round(metrics.r2_score (y_test, y_predict), 2) # Рассчёт коэфициента детерминации модели
return mid_square, det_kp
# Метод отрисовки графиков
def make_plots(y_test, y_predict, mid_sqrt, det_kp, title):
plt.plot(y_test, c="red", label="\"y\" исходная") # Создание графика исходной функции
plt.plot(y_predict, c="green", label="\"y\" предсказанная \n"
"Ср^2 = " + str(mid_sqrt) + "\n"
"Кд = " + str(det_kp)) # Создание графика предсказанной функции
plt.legend(loc='lower left')
plt.title(title)
plt.savefig('static/' + title + '.png')
plt.close()
# Метод построения графика кластеризации
def make_plot(x, c):
plt.scatter(x.values[:, 0], x.values[:, 13], c=c, cmap='viridis')
plt.xlabel('BMI')
plt.ylabel('SleepTime')
plt.colorbar()
plt.title('DBSCAN Clustering')
plt.savefig('static/dbscan.png')
plt.close()
if __name__ == '__main__':
dbscan()
linear_reg()