IIS_2023_1/mashkova_margarita_lab_2/main.py

101 lines
3.6 KiB
Python
Raw Normal View History

2023-11-22 00:31:35 +04:00
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import MinMaxScaler
import numpy as np
# Генерация исходных данных: 750 строк-наблюдений и 14 столбцов-признаков
np.random.seed(0)
size = 750
X = np.random.uniform(0, 1, (size, 14))
# Задаем функцию-выход: регрессионную проблему Фридмана
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] ** 5
+ np.random.normal(0, 1))
# Добавление зависимости признаков
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
# Создание моделей и их обучение
# Линейная модель
lr = LinearRegression()
lr.fit(X, Y)
# Гребневая модель
ridge = Ridge(alpha=7)
ridge.fit(X, Y)
# Лассо
lasso = Lasso(alpha=.05)
lasso.fit(X, Y)
# Регрессор случайного леса
rfr = RandomForestRegressor()
rfr.fit(X, Y)
# Список, содержащий имена признаков
names = ["x%s" % i for i in range(1, 15)]
# Функция создания записи в словаре оценок важности признаков
def rank_to_dict(ranks):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
# Словарь, содержащий оценки важности признаков
ranks_dict = dict()
# Добавление записей в словарь
ranks_dict["Linear regression"] = rank_to_dict(lr.coef_)
ranks_dict["Ridge"] = rank_to_dict(ridge.coef_)
ranks_dict["Lasso"] = rank_to_dict(lasso.coef_)
ranks_dict["Random Forest Regressor"] = rank_to_dict(rfr.feature_importances_)
def print_ranks():
for key, value in ranks_dict.items():
print(key)
print(value)
def print_ranks_sorted():
for key, value in ranks_dict.items():
print(key)
value_sorted = sorted(value.items(), key=lambda x: x[1], reverse=True)
print(value_sorted)
def get_means():
# Создаем пустой список для средних оценок
mean = {}
for key, value in ranks_dict.items():
# Пробегаемся по словарю значений ranks, которые являются парой имя:оценка
for item in value.items():
# Имя будет ключом для нашего mean
# Если элемента с текущим ключом в mean нет - добавляем
if item[0] not in mean:
mean[item[0]] = 0
# Суммируем значения по каждому ключу-имени признака
mean[item[0]] += item[1]
# Находим среднее по каждому признаку
for key, value in mean.items():
res = value / len(ranks_dict)
mean[key] = round(res, 2)
# сортируем список
mean_sorted = sorted(mean.items(), key=lambda x: x[1], reverse=True)
return mean_sorted
def print_means():
for item in get_means():
print(item)
print("Оценки каждого признака каждой моделью:")
print_ranks()
print("\nОценки каждого признака каждой моделью, отсортированные по убыванию:")
print_ranks_sorted()
print("\nСредние оценки признаков:")
print_means()