60 lines
2.3 KiB
Python
60 lines
2.3 KiB
Python
|
import numpy as np
|
|||
|
from keras.models import Sequential
|
|||
|
from keras.layers import Embedding, LSTM, Dense, Dropout
|
|||
|
from keras.preprocessing.text import Tokenizer
|
|||
|
from keras.preprocessing.sequence import pad_sequences
|
|||
|
from keras.utils import to_categorical
|
|||
|
|
|||
|
#Подготовка текста, получение данных для тренировки модели
|
|||
|
def tokenize(filename):
|
|||
|
with open(filename, encoding='utf-8') as file:
|
|||
|
text = file.read()
|
|||
|
|
|||
|
tokenizer = Tokenizer()
|
|||
|
tokenizer.fit_on_texts([text])
|
|||
|
uniq_words_amount = len(tokenizer.word_index) + 1
|
|||
|
|
|||
|
sequences = []
|
|||
|
list_token = tokenizer.texts_to_sequences([text])[0]
|
|||
|
for i in range(1, len(list_token)):
|
|||
|
sequences.append(list_token[:i + 1])
|
|||
|
|
|||
|
max_seq_length = max([len(x) for x in sequences])
|
|||
|
sequences = pad_sequences(sequences, maxlen=max_seq_length)
|
|||
|
|
|||
|
x, y = sequences[:, :-1], sequences[:, -1]
|
|||
|
y = to_categorical(y, num_classes=uniq_words_amount)
|
|||
|
|
|||
|
return max_seq_length, uniq_words_amount, tokenizer, x, y
|
|||
|
|
|||
|
#Создание и тренировка модели
|
|||
|
def train_model(max_seq_length, uniq_words_amount, x, y, epochs):
|
|||
|
model = Sequential()
|
|||
|
model.add(Embedding(uniq_words_amount, 128, input_length=max_seq_length-1))
|
|||
|
model.add(LSTM(152, return_sequences=False))
|
|||
|
model.add(Dropout(0.2))
|
|||
|
model.add(Dense(uniq_words_amount, activation='softmax'))
|
|||
|
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
|
|||
|
model.fit(x, y, epochs=epochs, verbose=1)
|
|||
|
return model
|
|||
|
|
|||
|
#Генерация текста
|
|||
|
def generate_text(text, tokenizer, model, max_seq_length):
|
|||
|
i = 0
|
|||
|
while(i < 100):
|
|||
|
list_token = tokenizer.texts_to_sequences([text])[0]
|
|||
|
token_list = pad_sequences([list_token], maxlen=max_seq_length-1, padding='pre')
|
|||
|
predict = model.predict(token_list)
|
|||
|
predict_index = np.argmax(predict, axis=-1)
|
|||
|
word = tokenizer.index_word.get(predict_index[0])
|
|||
|
text += " " + word
|
|||
|
i = i+1
|
|||
|
return text
|
|||
|
|
|||
|
msl, uwa, tokenizer, x, y = tokenize("text_rus.txt")
|
|||
|
model = train_model(msl, uwa, x, y, 140)
|
|||
|
print("Rus: ", generate_text("Кофе со специями", tokenizer, model, msl))
|
|||
|
|
|||
|
msl, uwa, tokenizer, x, y = tokenize("text_eng.txt")
|
|||
|
model = train_model(msl, uwa, x, y, 140)
|
|||
|
print("Eng: ", generate_text("The spiced coffee", tokenizer, model, msl))
|