2023-09-19 10:23:19 +04:00
|
|
|
|
import numpy as np
|
|
|
|
|
from matplotlib import pyplot as plt
|
2023-09-23 17:22:03 +04:00
|
|
|
|
from skimage.metrics import mean_squared_error
|
2023-09-19 10:23:19 +04:00
|
|
|
|
from sklearn.datasets import make_moons, make_circles, make_classification
|
2023-09-23 17:22:03 +04:00
|
|
|
|
from sklearn.linear_model import LinearRegression, Ridge
|
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
from sklearn.pipeline import make_pipeline
|
|
|
|
|
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
|
|
|
|
|
|
|
|
|
|
X, y = make_classification(
|
|
|
|
|
n_features=2,
|
|
|
|
|
n_redundant=0,
|
|
|
|
|
n_informative=2,
|
|
|
|
|
random_state=0,
|
|
|
|
|
n_clusters_per_class=1
|
|
|
|
|
)
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
|
|
|
|
rng = np.random.RandomState(2)
|
|
|
|
|
X += 2 * rng.uniform(size=X.shape)
|
|
|
|
|
linearly_dataset = (X, y)
|
|
|
|
|
moon_dataset = make_moons(noise=0.3, random_state=0)
|
|
|
|
|
circles_dataset = make_circles(noise=0.2, factor=0.5, random_state=1)
|
|
|
|
|
datasets = [moon_dataset, circles_dataset, linearly_dataset]
|
2023-09-23 17:22:03 +04:00
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
Данные:
|
|
|
|
|
· moon_dataset
|
|
|
|
|
· circles_dataset
|
|
|
|
|
· linearly_dataset
|
|
|
|
|
"""
|
2023-09-19 10:23:19 +04:00
|
|
|
|
for ds_cnt, ds in enumerate(datasets):
|
|
|
|
|
X, y = ds
|
|
|
|
|
X = StandardScaler().fit_transform(X)
|
2023-09-23 17:22:03 +04:00
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
|
|
|
X, y, test_size=.4, random_state=42
|
|
|
|
|
)
|
|
|
|
|
"""
|
|
|
|
|
Модели:
|
|
|
|
|
· Линейную регрессию
|
|
|
|
|
· Полиномиальную регрессию (со степенью 3)
|
|
|
|
|
· Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
|
|
|
|
|
"""
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# Линейная
|
|
|
|
|
linear_regression = LinearRegression()
|
|
|
|
|
linear_regression.fit(X_train, y_train)
|
|
|
|
|
linear_predictions = linear_regression.predict(X_test)
|
|
|
|
|
linear_mse = mean_squared_error(y_test, linear_predictions)
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# Полиномиальная (degree=3)
|
|
|
|
|
poly_regression = make_pipeline(PolynomialFeatures(degree=3), LinearRegression())
|
|
|
|
|
poly_regression.fit(X_train, y_train)
|
|
|
|
|
poly_predictions = poly_regression.predict(X_test)
|
|
|
|
|
poly_mse = mean_squared_error(y_test, poly_predictions)
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# Гребневая (degree=3, alpha=1.0)
|
|
|
|
|
poly_regression_alpha = make_pipeline(PolynomialFeatures(degree=3), Ridge(alpha=1.0))
|
|
|
|
|
poly_regression_alpha.fit(X_train, y_train)
|
|
|
|
|
poly_alpha_predictions = poly_regression_alpha.predict(X_test)
|
|
|
|
|
poly_alpha_mse = mean_squared_error(y_test, poly_alpha_predictions)
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# График данных
|
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
|
|
|
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm')
|
|
|
|
|
plt.title('Датасет №' + str(ds_cnt))
|
|
|
|
|
plt.xlabel('X')
|
|
|
|
|
plt.ylabel('Y')
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# График линейной модели
|
|
|
|
|
plt.figure(figsize=(10, 6))
|
2023-09-23 17:42:04 +04:00
|
|
|
|
plt.scatter(X_test[:, 0], linear_predictions, c=linear_predictions, cmap='coolwarm')
|
2023-09-23 17:22:03 +04:00
|
|
|
|
plt.title('Линейная ds'+ str(ds_cnt))
|
|
|
|
|
plt.xlabel('X')
|
|
|
|
|
plt.ylabel('Y')
|
|
|
|
|
plt.show()
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# График полиномиальной модели (degree=3)
|
|
|
|
|
plt.figure(figsize=(10, 6))
|
2023-09-23 17:42:04 +04:00
|
|
|
|
plt.scatter(X_test[:, 0], poly_predictions, c=poly_predictions, cmap='coolwarm')
|
2023-09-23 17:22:03 +04:00
|
|
|
|
plt.title('Полиномиальная (degree=3) ds' + str(ds_cnt))
|
|
|
|
|
plt.xlabel('X')
|
|
|
|
|
plt.ylabel('Y')
|
|
|
|
|
plt.show()
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# График гребневой модели (degree=3, alpha=1.0)
|
|
|
|
|
plt.figure(figsize=(10, 6))
|
2023-09-23 17:42:04 +04:00
|
|
|
|
plt.scatter(X_test[:, 0], poly_alpha_predictions, c=poly_alpha_predictions, cmap='coolwarm')
|
2023-09-23 17:22:03 +04:00
|
|
|
|
plt.title('Гребневая (degree=3, alpha=1.0) ds' + str(ds_cnt))
|
|
|
|
|
plt.xlabel('X')
|
|
|
|
|
plt.ylabel('Y')
|
|
|
|
|
plt.show()
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|
2023-09-23 17:22:03 +04:00
|
|
|
|
# Сравнение качества
|
|
|
|
|
print('Линейная MSE:', linear_mse)
|
|
|
|
|
print('Полиномиальная (degree=3) MSE:', poly_mse)
|
|
|
|
|
print('Гребневая (degree=3, alpha=1.0) MSE:', poly_alpha_mse)
|
2023-09-19 10:23:19 +04:00
|
|
|
|
|