59 lines
2.1 KiB
Python
59 lines
2.1 KiB
Python
|
import pandas as pd
|
|||
|
import matplotlib.pyplot as plt
|
|||
|
from sklearn.model_selection import train_test_split
|
|||
|
from sklearn.linear_model import LogisticRegression
|
|||
|
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
|||
|
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
|||
|
|
|||
|
# Загрузка данных
|
|||
|
data = pd.read_csv('person_types.csv')
|
|||
|
|
|||
|
# Выбор переменных для модели
|
|||
|
features = ['ACTIVITY_LEVEL', 'WEIGHT', 'HEIGHT']
|
|||
|
|
|||
|
# Отбор нужных столбцов
|
|||
|
df = data[features + ['SEX']]
|
|||
|
|
|||
|
# Удаление строк с пропущенными значениями
|
|||
|
df = df.dropna()
|
|||
|
|
|||
|
# Преобразование строковых значений в числа
|
|||
|
le = LabelEncoder()
|
|||
|
df['ACTIVITY_LEVEL'] = le.fit_transform(df['ACTIVITY_LEVEL'])
|
|||
|
|
|||
|
# Разделение на признаки и целевую переменную
|
|||
|
X = df.drop('SEX', axis=1)
|
|||
|
y = df['SEX']
|
|||
|
|
|||
|
# Разделение на тренировочный и тестовый наборы
|
|||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|||
|
|
|||
|
# Стандартизация признаков
|
|||
|
scaler = StandardScaler()
|
|||
|
X_train_scaled = scaler.fit_transform(X_train)
|
|||
|
X_test_scaled = scaler.transform(X_test)
|
|||
|
|
|||
|
# Создание и обучение логистической регрессии
|
|||
|
model = LogisticRegression()
|
|||
|
model.fit(X_train_scaled, y_train)
|
|||
|
|
|||
|
# Предсказание на тестовом наборе
|
|||
|
y_pred = model.predict(X_test_scaled)
|
|||
|
|
|||
|
# Оценка качества модели
|
|||
|
accuracy = accuracy_score(y_test, y_pred)
|
|||
|
conf_matrix = confusion_matrix(y_test, y_pred)
|
|||
|
class_report = classification_report(y_test, y_pred)
|
|||
|
|
|||
|
print(f'Accuracy: {accuracy}')
|
|||
|
print(f'Confusion Matrix:\n{conf_matrix}')
|
|||
|
print(f'Classification Report:\n{class_report}')
|
|||
|
|
|||
|
# Визуализация результатов
|
|||
|
plt.scatter(X_test['WEIGHT'], y_test, color='black', label='Actual')
|
|||
|
plt.scatter(X_test['WEIGHT'], y_pred, color='blue', label='Predicted', marker='x')
|
|||
|
plt.xlabel('Weight')
|
|||
|
plt.ylabel('Sex')
|
|||
|
plt.legend()
|
|||
|
plt.show()
|