IIS_2023_1/kozlov_alexey_lab_7/lab7.py

70 lines
2.4 KiB
Python
Raw Normal View History

2024-01-12 12:01:18 +04:00
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout
# Чтение текста из файла
#with open('russian.txt', 'r', encoding='utf-8') as file:
# text = file.read()
with open('english.txt', 'r', encoding='utf-8') as file:
text = file.read()
# Параметры модели
seq_length = 10
# Создание экземпляра Tokenizer и обучение на тексте
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts([text])
# Преобразование текста в последовательности чисел
sequences = tokenizer.texts_to_sequences([text])[0]
# Создание входных и выходных последовательностей
X_data = []
y_data = []
for i in range(seq_length, len(sequences)):
sequence = sequences[i - seq_length:i]
target = sequences[i]
X_data.append(sequence)
y_data.append(target)
# Преобразование входных и выходных данных в формат массивов numpy
X = pad_sequences(X_data, maxlen=seq_length)
y = np.array(y_data)
# Создание модели RNN
vocab_size = len(tokenizer.word_index) + 1
model = Sequential()
model.add(LSTM(256, input_shape=(seq_length, 1), return_sequences=True))
model.add(LSTM(128, input_shape=(seq_length, 1)))
model.add(Dense(vocab_size, activation='softmax'))
# Компиляция модели
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Обучение модели
model.fit(X, y, epochs=100, verbose=1)
# Функция для генерации текста
def generate_text(seed_text, gen_length):
generated_text = seed_text
for _ in range(gen_length):
sequence = tokenizer.texts_to_sequences([seed_text])[0]
sequence = pad_sequences([sequence], maxlen=seq_length)
prediction = model.predict(sequence)[0]
predicted_index = np.argmax(prediction)
predicted_char = tokenizer.index_word[predicted_index]
generated_text += predicted_char
seed_text += predicted_char
seed_text = seed_text[1:]
return generated_text
# Генерация текста
#seed_text = "Это было бы чудом"
seed_text = "The climate of"
generated_text = generate_text(seed_text, 250)
print(generated_text)