61 lines
1.8 KiB
Python
61 lines
1.8 KiB
Python
|
import pandas as pd
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.neural_network import MLPClassifier
|
||
|
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
||
|
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
||
|
|
||
|
# Load data
|
||
|
data = pd.read_csv('person_types.csv')
|
||
|
|
||
|
# Select variables for the model
|
||
|
features = ['HEIGHT', 'WEIGHT', 'ACTIVITY_LEVEL']
|
||
|
|
||
|
# Select relevant columns
|
||
|
df = data[features + ['SEX']]
|
||
|
|
||
|
# Drop rows with missing values
|
||
|
df = df.dropna()
|
||
|
|
||
|
# Convert string values to numerical for 'ACTIVITY_LEVEL'
|
||
|
le_activity = LabelEncoder()
|
||
|
df['ACTIVITY_LEVEL'] = le_activity.fit_transform(df['ACTIVITY_LEVEL'])
|
||
|
|
||
|
# Split into features and target variable
|
||
|
X = df.drop('SEX', axis=1)
|
||
|
y = df['SEX']
|
||
|
|
||
|
# Split into training and testing sets
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||
|
|
||
|
# Standardize features
|
||
|
scaler = StandardScaler()
|
||
|
X_train_scaled = scaler.fit_transform(X_train)
|
||
|
X_test_scaled = scaler.transform(X_test)
|
||
|
|
||
|
# Create and train MLPClassifier
|
||
|
model = MLPClassifier(random_state=42)
|
||
|
model.fit(X_train_scaled, y_train)
|
||
|
|
||
|
# Predict on the test set
|
||
|
y_pred = model.predict(X_test_scaled)
|
||
|
|
||
|
# Evaluate the model
|
||
|
accuracy = accuracy_score(y_test, y_pred)
|
||
|
conf_matrix = confusion_matrix(y_test, y_pred)
|
||
|
class_report = classification_report(y_test, y_pred)
|
||
|
|
||
|
print(f'Accuracy: {accuracy}')
|
||
|
print(f'Confusion Matrix:\n{conf_matrix}')
|
||
|
print(f'Classification Report:\n{class_report}')
|
||
|
|
||
|
# Visualize the results (e.g., a histogram)
|
||
|
plt.hist(y_pred, bins=np.arange(3)-0.5, alpha=0.75, color='blue', label='Predicted')
|
||
|
plt.hist(y_test, bins=np.arange(3)-0.5, alpha=0.5, color='green', label='Actual')
|
||
|
plt.xlabel('Sex')
|
||
|
plt.ylabel('Count')
|
||
|
plt.xticks([0, 1], ['Female', 'Male'])
|
||
|
plt.legend()
|
||
|
plt.show()
|