IIS_2023_1/madyshev_egor_lab_1/main.py

51 lines
2.5 KiB
Python
Raw Normal View History

2023-10-06 21:55:29 +04:00
import random
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import Perceptron
rs = random.randrange(100)
X, y = make_moons(n_samples=200, noise=0.3, random_state=rs)
X_train, X_Test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
print("Линейная регрессия")
linerModel = LinearRegression().fit(X_train, y_train)
print("результат модели на учебных данных =", linerModel.score(X_train, y_train))
print("результат модели на тестовых данных =", linerModel.score(X_Test, y_test))
print("Многослойный персептрон с 10-ю нейронами в скрытом слое")
mlp = MLPClassifier(hidden_layer_sizes=(10), alpha = 0.01, max_iter=2000).fit(X_train, y_train)
print("результат модели на учебных данных =", mlp.score(X_train, y_train))
print("результат модели на тестовых данных =", mlp.score(X_Test, y_test))
print("Персептрон ")
perceptron = Perceptron().fit(X_train, y_train)
print("результат модели на учебных данных =", perceptron.score(X_train, y_train))
print("результат модели на тестовых данных =", perceptron.score(X_Test, y_test))
plt.xlabel("Свойство 1")
plt.ylabel("Свойство 2")
plt.title("Сгенерированные данные")
plt.scatter(X[:, 0], X[:, 1], c = y, cmap = plt.cm.Set1)
plt.show()
h = 0.01
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
def showPlot(name, model):
plt.title(name)
c = model.predict(np.c_[xx.ravel(), yy.ravel()])
c = np.where(c >= 0.5, 1, 0)
c = c.reshape(xx.shape)
plt.contourf(xx, yy, c, cmap = plt.cm.Set1, alpha=0.2)
plt.scatter(X[:, 0], X[:, 1], c = y, cmap = plt.cm.Set1)
plt.show()
showPlot("Линейная регрессия", linerModel)
showPlot("Многослойный персептрон", mlp)
showPlot("Персептрон", perceptron)