IIS_2023_1/tepechin_kirill_lab_4/README.md

62 lines
5.0 KiB
Markdown
Raw Permalink Normal View History

2023-12-01 13:27:39 +04:00
## Лабораторная работа №4, ПИбд-42 Тепечин Кирилл
### Датасет:
#### Ссылка:
[Smoking and Drinking Dataset with body signal](https://www.kaggle.com/datasets/sooyoungher/smoking-drinking-dataset/data)
#### Подробности датасета
| Столбец | Пояснение |
|------------------|:-----------------------------------------------------------------:|
| sex | Пол(мужской, женский) |
| age | Возраст(округлён) |
| height | Рост(округлён) [см] |
| weight | [кг] |
| sight_left | зрение (левый) |
| sight_left | зрение (правый) |
| hear_left | слух (левое): 1 (нормальное), 2 (ненормальное) |
| hear_right | слух (правое): 1 (нормальное), 2 (ненормальное) |
| SBP | Систолическое артериальное давление [мм рт. ст.] |
| DBP | Диастолическое артериальное давление [мм рт. ст.] |
| BLDS | глюкоза в крови натощак [мг/дл] |
| tot_chole | общий холестерин [мг/дл] |
| HDL_chole | Холестерин ЛПВП [мг/дл] |
| LDL_chole | Холестерин ЛПНП [мг/дл] |
| triglyceride | триглицерид [мг/дл] |
| hemoglobin | гемоглобин [г/дл] |
| urine_protein | белок в моче, 1(-), 2(+/-), 3(+1), 4(+2), 5(+3), 6(+4) |
| serum_creatinine | креатинин сыворотки (крови) [мг/дл] |
| SGOT_AST | глутамат-оксалоацетат-трансаминаза / аспартат-трансаминаза [МЕ/л] |
| SGOT_ALT | аланиновая трансаминаза [МЕ/л] |
| gamma_GTP | γ-глутамилтранспептидаза [МЕ/л] |
| SMK_stat_type_cd | Степень курения: 1 (никогда), 2 (бросил), 3 (курю) |
| DRK_YN | Пьющий или нет |
### Как запустить лабораторную работу:
Для запуска лабораторной работы необходимо запустить файл lab4.py
### Используемые технологии:
* Python 3.12
* pandas
* scikit-learn
* matplotlib
### Что делает лабораторная работа:
Эта лабораторная программа загружает данные из csv файла, выбирает признаки, нормализует данные, строит дендрограмму и оценивает качество кластеризации с помощью silhouette score.
### Предварительная обработка данных:
Т.к датасет содержит слишком большое количество данных следует уменшить их размер
````python
data = data.sample(frac=0.01, random_state=42)
````
### Результат:
![Результат](dendr.png)
На основании этой дендрограмы можно выбрать количество кластеров, на которое разумно поделить данные (4)
Теперь используем метод иерархической кластеризации (AgglomerativeClustering) с 4 кластерами. Метки кластеров присваиваются данным, а затем вычисляется показатель silhouette score, который оценивает качество кластеризации.
![Оценка](sil.png)
### Вывод:
Значение в районе 0.094 может быть интерпретировано как относительно низкое, что может указывать на то, что данные не разделены очень четко в кластеры, поэтому можно сделать вывод, что метод плохо подходит для решения задачи.