59 lines
2.1 KiB
Python
59 lines
2.1 KiB
Python
|
# app.py
|
||
|
from flask import Flask, render_template, request
|
||
|
import pandas as pd
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
|
||
|
app = Flask(__name__)
|
||
|
|
||
|
# Load data from the CSV file
|
||
|
data = pd.read_csv("student-mat.csv")
|
||
|
|
||
|
# Map the 'health' variable to three classes
|
||
|
data['health_class'] = pd.cut(data['health'], bins=[-1, 2, 3, 5], labels=['плохое', 'среднее', 'хорошее'])
|
||
|
|
||
|
# Define features and target variable
|
||
|
features = ['Pstatus', 'guardian', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'absences']
|
||
|
X = pd.get_dummies(data[features])
|
||
|
y = data['health_class']
|
||
|
|
||
|
# Split the data into training and testing sets
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=42)
|
||
|
|
||
|
# Create and train the logistic regression model
|
||
|
model = LogisticRegression(max_iter=1000)
|
||
|
model.fit(X_train, y_train)
|
||
|
|
||
|
@app.route("/", methods=["GET", "POST"])
|
||
|
def index():
|
||
|
if request.method == "POST":
|
||
|
# Get data from the form
|
||
|
form_data = request.form
|
||
|
input_data = pd.DataFrame({
|
||
|
'Pstatus': [form_data['Pstatus']],
|
||
|
'guardian': [form_data['guardian']],
|
||
|
'internet': [form_data['internet']],
|
||
|
'romantic': [form_data['romantic']],
|
||
|
'famrel': [int(form_data['famrel'])],
|
||
|
'freetime': [int(form_data['freetime'])],
|
||
|
'goout': [int(form_data['goout'])],
|
||
|
'Dalc': [int(form_data['Dalc'])],
|
||
|
'Walc': [int(form_data['Walc'])],
|
||
|
'absences': [int(form_data['absences'])]
|
||
|
})
|
||
|
|
||
|
# One-hot encode the categorical variables consistently
|
||
|
input_data = pd.get_dummies(input_data)
|
||
|
# Ensure the input features match the features seen during training
|
||
|
input_data = input_data.reindex(columns=X.columns, fill_value=0)
|
||
|
|
||
|
# Make prediction
|
||
|
prediction = model.predict(input_data)[0]
|
||
|
|
||
|
return render_template("index.html", prediction_result=prediction)
|
||
|
|
||
|
return render_template("index.html")
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
app.run(host="localhost", port=5000)
|