DAS_2024_1/ismailov_rovshan_lab_6/main.py

91 lines
2.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import random
import time
import multiprocessing
import numpy as np
# Генерация матрицы
def generate_matrix(size):
return [[random.randint(0, 10) for _ in range(size)] for _ in range(size)]
# Вычисление детерминанта матрицы (рекурсивно)
def determinant(matrix):
size = len(matrix)
if size == 2:
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]
det = 0
for col in range(size):
submatrix = [row[:col] + row[col + 1:] for row in matrix[1:]]
det += ((-1) ** col) * matrix[0][col] * determinant(submatrix)
return det
# Вычисление детерминанта параллельно
def parallel_determinant(matrix, num_processes):
size = len(matrix)
if size <= 2:
return determinant(matrix)
# Разбиение задачи по строкам на несколько потоков
chunk_size = size // num_processes
chunks = []
# Создание задач для потоков
for i in range(num_processes):
start_row = i * chunk_size
end_row = (i + 1) * chunk_size if i < num_processes - 1 else size
chunks.append((matrix[start_row:end_row], i))
with multiprocessing.Pool(processes=num_processes) as pool:
results = pool.starmap(calculate_determinant_chunk, [(matrix, chunk[0], chunk[1]) for chunk in chunks])
det = sum(results)
return det
# Вычисление детерминанта для части матрицы в одном процессе
def calculate_determinant_chunk(matrix, chunk, chunk_index):
size = len(matrix)
det = 0
for row in chunk:
for col in range(size):
submatrix = [r[:col] + r[col + 1:] for r in matrix[1:]]
det += ((-1) ** (chunk_index + col)) * matrix[0][col] * determinant(submatrix)
return det
# Замер времени для параллельного вычисления детерминанта
def benchmark(size, num_processes=1):
matrix = generate_matrix(size)
start_time = time.time()
parallel_determinant(matrix, num_processes)
par_time = time.time() - start_time
return par_time
def main():
# Размеры матриц
matrix_sizes = [9, 10, 11]
# Количество потоков
num_processes_list = [1, 2, 4, 6, 8]
# Таблица с бенчмарками
print("-*" * 40)
print(f"{'Количество потоков':<20}{'|9x9 (сек.)':<20}{'|10x10 (сек.)':<20}{'|11x11 (сек.)'}")
print("-*" * 40)
for num_processes in num_processes_list:
row = f"{num_processes:<20}"
for size in matrix_sizes:
par_time = benchmark(size, num_processes)
row += f"|{par_time:.4f}".ljust(20)
print(row)
print("-*" * 40)
if __name__ == "__main__":
main()