94 lines
3.2 KiB
Python
94 lines
3.2 KiB
Python
import time
|
||
import multiprocessing
|
||
import numpy as np
|
||
|
||
def multiply_matrices_sequential(matrix1, matrix2):
|
||
rows1 = len(matrix1)
|
||
cols1 = len(matrix1[0])
|
||
rows2 = len(matrix2)
|
||
cols2 = len(matrix2[0])
|
||
|
||
if cols1 != rows2:
|
||
raise ValueError("Число столбцов первой матрицы должно быть равно числу строк второй матрицы.")
|
||
|
||
result = [[0 for _ in range(cols2)] for _ in range(rows1)]
|
||
for i in range(rows1):
|
||
for j in range(cols2):
|
||
for k in range(cols1):
|
||
result[i][j] += matrix1[i][k] * matrix2[k][j]
|
||
return result
|
||
|
||
def multiply_matrices_parallel(matrix1, matrix2, num_processes):
|
||
rows1 = len(matrix1)
|
||
cols1 = len(matrix1[0])
|
||
rows2 = len(matrix2)
|
||
cols2 = len(matrix2[0])
|
||
|
||
if cols1 != rows2:
|
||
raise ValueError("Число столбцов первой матрицы должно быть равно числу строк второй матрицы.")
|
||
|
||
chunk_size = rows1 // num_processes
|
||
processes = []
|
||
results = []
|
||
|
||
with multiprocessing.Pool(processes=num_processes) as pool:
|
||
for i in range(num_processes):
|
||
start_row = i * chunk_size
|
||
end_row = (i + 1) * chunk_size if i < num_processes - 1 else rows1
|
||
p = pool.apply_async(multiply_matrix_chunk, (matrix1, matrix2, start_row, end_row))
|
||
processes.append(p)
|
||
|
||
for p in processes:
|
||
results.append(p.get())
|
||
|
||
result = [[0 for _ in range(cols2)] for _ in range(rows1)]
|
||
row_index = 0
|
||
for sub_result in results:
|
||
for row in sub_result:
|
||
result[row_index] = row
|
||
row_index += 1
|
||
|
||
return result
|
||
|
||
|
||
def multiply_matrix_chunk(matrix1, matrix2, start_row, end_row):
|
||
rows2 = len(matrix2)
|
||
cols2 = len(matrix2[0])
|
||
cols1 = len(matrix1[0])
|
||
result = [[0 for _ in range(cols2)] for _ in range(end_row - start_row)]
|
||
for i in range(end_row - start_row):
|
||
for j in range(cols2):
|
||
for k in range(cols1):
|
||
result[i][j] += matrix1[i + start_row][k] * matrix2[k][j]
|
||
return result
|
||
|
||
|
||
def benchmark(matrix_size, num_processes):
|
||
matrix1 = np.random.rand(matrix_size, matrix_size).tolist()
|
||
matrix2 = np.random.rand(matrix_size, matrix_size).tolist()
|
||
|
||
try:
|
||
start_time = time.time()
|
||
sequential_result = multiply_matrices_sequential(matrix1, matrix2)
|
||
end_time = time.time()
|
||
sequential_time = end_time - start_time
|
||
|
||
start_time = time.time()
|
||
parallel_result = multiply_matrices_parallel(matrix1, matrix2, num_processes)
|
||
end_time = time.time()
|
||
parallel_time = end_time - start_time
|
||
return sequential_time, parallel_time
|
||
except ValueError as e:
|
||
print(f"Ошибка бенчмарка с размером матрицы {matrix_size} и {num_processes} процессов: {e}")
|
||
return float('inf'), float('inf')
|
||
|
||
|
||
if __name__ == "__main__":
|
||
sizes = [100, 300, 500]
|
||
num_processes = int(input("Введите количество потоков: "))
|
||
print("Размер | Последовательно | Параллельно")
|
||
|
||
for size in sizes:
|
||
sequential_time, parallel_time = benchmark(size, num_processes)
|
||
print(f"{size:6} | {sequential_time:.4f} с \t | {parallel_time:.4f} с")
|