DAS_2024_1/novopolcev_alexander_lab_6/main.py

118 lines
3.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import random
import time
import copy
from multiprocessing import Pool
import concurrent.futures
from copy import deepcopy
class Matrix:
def __init__(self) -> None:
self.matrix_100 = [[0] * 100 for _ in range(100)]
self.matrix_300 = [[0] * 300 for _ in range(300)]
self.matrix_500 = [[0] * 500 for _ in range(500)]
def str_matrix(self, type_list: str):
_str = ""
current_matrix = getattr(self, type_list)
for i in range(len(current_matrix)):
_str += "[ "
for j in range(len(current_matrix[0])):
_str += str(current_matrix[i][j]) + " "
_str += " ]\n"
return _str
def init_matrix(matrix: Matrix, size: int):
for i in range(size):
for j in range(size):
matrix.__dict__[f"matrix_{size}"][i][j] = random.randint(0, 5)
def parallel_det(matrix, num_threads=1):
n = len(matrix)
m = deepcopy(matrix)
det_value = 1
for i in range(n):
if m[i][i] == 0:
for j in range(i + 1, n):
if m[j][i] != 0:
m[i], m[j] = m[j], m[i]
det_value *= -1
break
else:
return 0
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = [executor.submit(process_row, i, j, m, n) for j in range(i + 1, n)]
concurrent.futures.wait(futures)
det_value *= m[i][i]
m = [list(row) for row in m] # Обновляем строки матрицы
return det_value
def process_row(i, j, m, n):
factor = m[j][i] / m[i][i]
for k in range(i, n):
m[j][k] -= factor * m[i][k]
return m[j]
def det(matrix):
n = len(matrix)
m = [row[:] for row in matrix]
det_value = 1
for i in range(n):
if m[i][i] == 0:
for j in range(i + 1, n):
if m[j][i] != 0:
m[i], m[j] = m[j], m[i]
det_value *= -1
break
else:
return 0
for j in range(i + 1, n):
factor = m[j][i] / m[i][i]
for k in range(i, n):
m[j][k] -= factor * m[i][k]
det_value *= m[i][i]
return det_value
def benchmark():
matrix = Matrix()
init_matrix(matrix, 100)
init_matrix(matrix, 300)
init_matrix(matrix, 500)
sizes = [100, 300, 500]
for size in sizes:
current_matrix = getattr(matrix, f'matrix_{size}')
start_time = time.time()
seq_result = det(current_matrix)
seq_time = time.time() - start_time
print(f"Последовательный детерминант {size}x{size}: {seq_result}, Время: {seq_time:.6f}с")
start_time = time.time()
par_result = parallel_det(current_matrix, num_threads=4) # Измените число потоков по необходимости
par_time = time.time() - start_time
print(f"Параллельный детерминант {size}x{size}: {par_result}, Время: {par_time:.6f}с")
if __name__ == "__main__":
benchmark()