DAS_2024_1/novopolcev_alexander_lab_5/main.py

62 lines
2.3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
import time
from multiprocessing import Pool
def multiply_matrices_sequential(A, B):
"""Последовательное умножение матриц."""
n = A.shape[0]
C = np.zeros((n, n))
for i in range(n):
for j in range(n):
C[i][j] = np.dot(A[i], B[:, j]) # Используем векторизированное умножение для повышения производительности
return C
def worker(args):
"""Функция для параллельного умножения матриц, которая обрабатывает строки."""
A, B, row_indices = args
C_part = np.zeros((len(row_indices), B.shape[1]))
for idx, i in enumerate(row_indices):
C_part[idx] = np.dot(A[i], B)
return C_part
def multiply_matrices_parallel(A, B, num_workers):
"""Параллельное умножение матриц."""
n = A.shape[0]
C = np.zeros((n, n))
row_indices = np.array_split(range(n), num_workers)
with Pool(processes=num_workers) as pool:
results = pool.map(worker, [(A, B, idx) for idx in row_indices])
# Объединяем результаты
for i, result in enumerate(results):
C[i * len(result): (i + 1) * len(result)] = result
return C
def benchmark(matrix_size, num_workers):
# Генерация случайных матриц
A = np.random.rand(matrix_size, matrix_size)
B = np.random.rand(matrix_size, matrix_size)
start_time = time.time()
if num_workers == 1:
C = multiply_matrices_sequential(A, B)
else:
C = multiply_matrices_parallel(A, B, num_workers)
end_time = time.time()
method = "последовательное" if num_workers == 1 else f"параллельное с {num_workers} потоками"
print(f"{method.capitalize()} умножение матриц {matrix_size}x{matrix_size}: {end_time - start_time:.6f} сек")
if __name__ == "__main__":
# Запуск бенчмарков
sizes = [100, 300, 500]
for size in sizes:
print(f"\nБенчмарк для матриц размером {size}x{size}:")
benchmark(size, 1) # Последовательный
benchmark(size, 4) # Параллельный (4 потока)
benchmark(size, 8) # Параллельный (8 потоков)