DAS_2024_1/artamonova_tatyana_lab_5/matrix.py

94 lines
3.2 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import multiprocessing
import numpy as np
def multiply_matrices_sequential(matrix1, matrix2):
rows1 = len(matrix1)
cols1 = len(matrix1[0])
rows2 = len(matrix2)
cols2 = len(matrix2[0])
if cols1 != rows2:
raise ValueError("Число столбцов первой матрицы должно быть равно числу строк второй матрицы.")
result = [[0 for _ in range(cols2)] for _ in range(rows1)]
for i in range(rows1):
for j in range(cols2):
for k in range(cols1):
result[i][j] += matrix1[i][k] * matrix2[k][j]
return result
def multiply_matrices_parallel(matrix1, matrix2, num_processes):
rows1 = len(matrix1)
cols1 = len(matrix1[0])
rows2 = len(matrix2)
cols2 = len(matrix2[0])
if cols1 != rows2:
raise ValueError("Число столбцов первой матрицы должно быть равно числу строк второй матрицы.")
chunk_size = rows1 // num_processes
processes = []
results = []
with multiprocessing.Pool(processes=num_processes) as pool:
for i in range(num_processes):
start_row = i * chunk_size
end_row = (i + 1) * chunk_size if i < num_processes - 1 else rows1
p = pool.apply_async(multiply_matrix_chunk, (matrix1, matrix2, start_row, end_row))
processes.append(p)
for p in processes:
results.append(p.get())
result = [[0 for _ in range(cols2)] for _ in range(rows1)]
row_index = 0
for sub_result in results:
for row in sub_result:
result[row_index] = row
row_index += 1
return result
def multiply_matrix_chunk(matrix1, matrix2, start_row, end_row):
rows2 = len(matrix2)
cols2 = len(matrix2[0])
cols1 = len(matrix1[0])
result = [[0 for _ in range(cols2)] for _ in range(end_row - start_row)]
for i in range(end_row - start_row):
for j in range(cols2):
for k in range(cols1):
result[i][j] += matrix1[i + start_row][k] * matrix2[k][j]
return result
def benchmark(matrix_size, num_processes):
matrix1 = np.random.rand(matrix_size, matrix_size).tolist()
matrix2 = np.random.rand(matrix_size, matrix_size).tolist()
try:
start_time = time.time()
sequential_result = multiply_matrices_sequential(matrix1, matrix2)
end_time = time.time()
sequential_time = end_time - start_time
start_time = time.time()
parallel_result = multiply_matrices_parallel(matrix1, matrix2, num_processes)
end_time = time.time()
parallel_time = end_time - start_time
return sequential_time, parallel_time
except ValueError as e:
print(f"Ошибка бенчмарка с размером матрицы {matrix_size} и {num_processes} процессов: {e}")
return float('inf'), float('inf')
if __name__ == "__main__":
sizes = [100, 300, 500]
num_processes = int(input("Введите количество потоков: "))
print("Размер | Последовательно | Параллельно")
for size in sizes:
sequential_time, parallel_time = benchmark(size, num_processes)
print(f"{size:6} | {sequential_time:.4f} с \t | {parallel_time:.4f} с")