DAS_2024_1/morozov_vladimir_lab_6/app.py

141 lines
4.6 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
from multiprocessing import Pool
import numpy as np
from datetime import datetime
# Поиск строки с наибольшим кол-вом нулей
def check_zeros_string(arr, start=0, end=0):
if end == 0:
end = len(arr)
max_zeros = []
for i in range(start, end):
max_zeros.append((i, len(arr[start]) - int(np.count_nonzero(arr[i]))))
max = max_zeros[0]
for zero in max_zeros:
if zero[1] >= max[1]:
max = zero
return max
# Поиск столбца с наибольшим кол-вом нулей
def check_zeros_column(arr, start=0, end=0):
if end == 0:
end = len(arr)
max_zeros = []
for i in range(start, end):
max_zeros.append((i, len(arr[:, start]) - int(np.count_nonzero(arr[:, i]))))
max = max_zeros[0]
for zero in max_zeros:
if zero[1] >= max[1]:
max = zero
return max
# Уменьшение порядка матрицы по строке
def delta_string(arr, id, start=0, end=0):
if end == 0:
end = len(arr)
if arr.shape == (2, 2):
return arr[0][0] * arr[1][1] - arr[0][1] * arr[1][0]
num_arrays = []
for j in range(start, end):
if arr[id][j] == 0:
continue
minor = np.delete(arr, id, 0)
minor = np.delete(minor, j, 1)
num_arrays.append((arr[id][j] * pow(-1, id + j + 2), minor))
result = 0
for n_a in num_arrays:
max_zeros_strings = check_zeros_string(n_a[1])
max_zeros_columns = check_zeros_column(n_a[1])
if max_zeros_strings[1] >= max_zeros_columns[1]:
delta = delta_string(n_a[1], max_zeros_strings[0])
else:
delta = delta_column(n_a[1], max_zeros_columns[0])
result += n_a[0] * delta
return result
# Уменьшение порядка матрицы по столбцу
def delta_column(arr, id, start=0, end=0):
if end == 0:
end = len(arr)
if arr.shape == (2, 2):
return arr[0][0] * arr[1][1] - arr[0][1] * arr[1][0]
num_arrays = []
for i in range(start, end):
if arr[i][id] == 0:
continue
minor = np.delete(arr, i, 0)
minor = np.delete(minor, id, 1)
num_arrays.append((arr[i][id] * pow(-1, i + id + 2), minor))
result = 0
for n_a in num_arrays:
max_zeros_strings = check_zeros_string(n_a[1])
max_zeros_columns = check_zeros_column(n_a[1])
if max_zeros_strings[1] >= max_zeros_columns[1]:
delta = delta_string(n_a[1], max_zeros_strings[0])
else:
delta = delta_column(n_a[1], max_zeros_columns[0])
result += n_a[0] * delta
return result
if __name__ == '__main__':
print("Start")
sizes = [6, 8, 11]
threads_counts = [1, 2, 4]
for size in sizes:
fst = np.random.randint(0, 5, size=(size, size))
for thread_count in threads_counts:
step = math.floor(size / thread_count)
remaining_lines = size % thread_count
steps = [step] * thread_count
pool = Pool(thread_count)
for i in range(0, len(steps)):
steps[i] = steps[i] + math.ceil(remaining_lines / thread_count)
remaining_lines -= math.ceil(remaining_lines / thread_count)
if remaining_lines == 0:
break
args = []
i = 0
for step in steps:
args.append([fst,i, i + step])
i += step
startTime = datetime.now()
max_zero_string = pool.starmap(check_zeros_string, args)
max_zero_column = pool.starmap(check_zeros_column, args)
mzs = max_zero_string[0]
for mz in max_zero_string:
if mz[1] >= mzs[1]:
mzs = mz
mzc = max_zero_column[0]
for mz in max_zero_column:
if mz[1] >= mzc[1]:
mzc = mz
args.clear()
i = 0
if mzs[1] >= mzc[1]:
for step in steps:
args.append([fst, mzs[0], i, i + step])
i += step
result = pool.starmap(delta_string, args)
else:
for step in steps:
args.append([fst, mzc[0], i, i + step])
i += step
result = pool.starmap(delta_column, args)
endTime = datetime.now()
print(f"Size: {size}")
print(f"Count of threads: {thread_count}")
print(f"Work time: {endTime-startTime}")
print("_-_-_-_-_-_-_-_-_-")
print("-------------------------------------------")