DAS_2024_1/lazarev_andrey_lab_5/main.py
2024-11-05 22:38:45 +04:00

81 lines
2.5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
from concurrent.futures import ProcessPoolExecutor
import time
#Функция умножения матриц
def multi(A, B):
n = len(A)
k = len(B)
C = np.zeros((n, n))
for i in range(n):
for j in range(n):
C[i][j] = sum(A[i][p] * B[p][j] for p in range(k))
return C
# Функция последовательного умножения матриц
def multi_sequential(A, B):
n = len(A)
C = np.zeros((n, n))
for i in range(n):
for k in range(n):
temp = A[i][k]
for j in range(n):
C[i][j] += temp * B[k][j]
return C
# Функция умножения матриц с numpy
def multi_numpy(A, B):
return np.dot(A, B)
# Параллельное умножение матриц
def multi_parallel(A, B, num_threads):
n = len(A)
C = np.zeros((n, n))
step = n // num_threads
with ProcessPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in range(num_threads):
start_row = i * step
end_row = (i + 1) * step if i != num_threads - 1 else n
a_slice = A[:, i*step: (i+1)*step]
b_slice = B[start_row:end_row]
futures.append(executor.submit(multi, a_slice, b_slice))
for future in futures:
C += future.result()
return C
# Пример использования
if __name__ == "__main__":
matrix_sizes = [100, 300, 500]
num_threads = [2, 4, 5, 10]
for n in matrix_sizes:
A = np.random.rand(n, n)
B = np.random.rand(n, n)
# Умножение с numpy
start_np = time.time()
nump = multi_numpy(A, B)
end_np = time.time()
print(f'Умножение матриц {n}x{n} последовательно с numpy: {(end_np - start_np):.6f} с.')
# Последовательное умножение
start_seq = time.time()
sequential = multi_sequential(A, B)
end_seq = time.time()
print(f'Умножение матриц {n}x{n} последовательно: {(end_seq - start_seq):.6f} с.')
# Параллельное умножение
for thread in num_threads:
start_par = time.time()
parallel = multi_parallel(A, B, thread)
end_par = time.time()
print(f'Умножение матриц {n}x{n} параллельно для {thread} потоков: {(end_par - start_par):.3f} с.')
print('')