import random import time import multiprocessing import numpy as np # Генерация матрицы def generate_matrix(size): return [[random.randint(0, 10) for _ in range(size)] for _ in range(size)] # Умножение одной строки def multiply_row(i, A, B, result): size = len(A) for j in range(size): for k in range(size): result[i][j] += A[i][k] * B[k][j] # параллельное умножение матриц с помощью multiprocessing def parallel_matrix_multiply(A, B, num_processes): size = len(A) result = [[0] * size for _ in range(size)] with multiprocessing.Pool(processes=num_processes) as pool: pool.starmap(multiply_row, [(i, A, B, result) for i in range(size)]) return result # Замер времени на умножение def benchmark(size, num_processes=1): A = generate_matrix(size) B = generate_matrix(size) start_time = time.time() parallel_matrix_multiply(A, B, num_processes) par_time = time.time() - start_time return par_time def main(): # Размеры матриц matrix_sizes = [100, 300, 500] # Количество потоков num_processes_list = [1, 2, 4, 6, 8] # Таблица с бенчмарками print("-*" * 40) print(f"{'Количество потоков':<20}{'|100x100 (сек.)':<20}{'|300x300 (сек.)':<20}{'|500x500 (сек.)'}") print("-*" * 40) for num_processes in num_processes_list: row = f"{num_processes:<20}" for size in matrix_sizes: par_time = benchmark(size, num_processes) row += f"|{par_time:.4f}".ljust(20) print(row) print("-*" * 40) if __name__ == "__main__": main()