import numpy as np from multiprocessing import Pool import time import argparse def determinant_block(matrix_block): return np.linalg.det(matrix_block) def determinant_parallel(matrix, num_processes): size = matrix.shape[0] step = size // num_processes blocks = [] for i in range(num_processes): start_row = i * step end_row = start_row + step if i < num_processes - 1 else size blocks.append(matrix[start_row:end_row, start_row:end_row]) pool = Pool(processes=num_processes) dets = pool.map(determinant_block, blocks) pool.close() pool.join() return np.prod(dets) def benchmark(size, num_processes): matrix = np.random.rand(size, size) start = time.time() det_parallel = determinant_parallel(matrix, num_processes) end = time.time() print(f"Матрица {size}x{size} с {num_processes} процессами заняла {end - start:.5f} сек (Параллельно)") start = time.time() det_seq = determinant_block(matrix) end = time.time() print(f"Матрица {size}x{size} последовательный вычисление заняло {end - start:.5f} сек (Последовательно)") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Вычисление детерминанта с параллельной обработкой") parser.add_argument("--processes", type=int, default=4) args = parser.parse_args() sizes = [100, 300, 500] for size in sizes: benchmark(size, args.processes)