tukaeva_alfiya_lab_6 #114

Merged
Alexey merged 1 commits from tukaeva_alfiya_lab_6 into main 2024-11-20 22:37:12 +04:00
3 changed files with 146 additions and 0 deletions

View File

@ -0,0 +1,29 @@
# Лабораторная работа №6 - Определение детерминанта матрицы с помощью параллельных вычислений
## Задание
* Кратко: реализовать нахождение детерминанта квадратной матрицы. Что такое детерминант матрицы (или определитель) можно посмотреть по ссылке.
* Подробно: в лабораторной работе требуется сделать два алгоритма: обычный и параллельный (задание со * - реализовать это в рамках одного алгоритма). В параллельном алгоритме предусмотреть ручное задание количества потоков (число потоков = 1 как раз и реализует задание со *), каждый из которых будет выполнять нахождение отдельной группы множителей.
## Работа программы:
 1. Инициализирует три матрицы размером 100x100, 300x300 и 500x500 со случайными значениями.
 2. det(matrix) реализует алгоритм Гаусса для нахождения детерминанта квадратной матрицы.
 3. parallel_det(matrix, num_threads=1) использует пул потоков для ускорения вычислений. Для каждой строки матрицы создается поток, который обрабатывает все строки под ней, применяя необходимые преобразования.
### Результат:
![](result.png "")
### Вывод:
Параллельные вычисления могут значительно ускорить процесс нахождения детерминанта, особенно когда речь идет о больших матрицах. Тем не менее, иногда результаты вычисленного детерминанта могут различаться между последовательным и параллельным подходами.
# Видео
https://vk.com/video230744264_456239110?list=ln-LZEUeze0D4JCSQZ4LK

View File

@ -0,0 +1,117 @@
import random
import time
import copy
from multiprocessing import Pool
import concurrent.futures
from copy import deepcopy
class Matrix:
def __init__(self) -> None:
self.matrix_100 = [[0] * 100 for _ in range(100)]
self.matrix_300 = [[0] * 300 for _ in range(300)]
self.matrix_500 = [[0] * 500 for _ in range(500)]
def str_matrix(self, type_list: str):
_str = ""
current_matrix = getattr(self, type_list)
for i in range(len(current_matrix)):
_str += "[ "
for j in range(len(current_matrix[0])):
_str += str(current_matrix[i][j]) + " "
_str += " ]\n"
return _str
def init_matrix(matrix: Matrix, size: int):
for i in range(size):
for j in range(size):
matrix.__dict__[f"matrix_{size}"][i][j] = random.randint(0, 5)
def parallel_det(matrix, num_threads=1):
n = len(matrix)
m = deepcopy(matrix)
det_value = 1
for i in range(n):
if m[i][i] == 0:
for j in range(i + 1, n):
if m[j][i] != 0:
m[i], m[j] = m[j], m[i]
det_value *= -1
break
else:
return 0
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = [executor.submit(process_row, i, j, m, n) for j in range(i + 1, n)]
concurrent.futures.wait(futures)
det_value *= m[i][i]
m = [list(row) for row in m] # Обновляем строки матрицы
return det_value
def process_row(i, j, m, n):
factor = m[j][i] / m[i][i]
for k in range(i, n):
m[j][k] -= factor * m[i][k]
return m[j]
def det(matrix):
n = len(matrix)
m = [row[:] for row in matrix]
det_value = 1
for i in range(n):
if m[i][i] == 0:
for j in range(i + 1, n):
if m[j][i] != 0:
m[i], m[j] = m[j], m[i]
det_value *= -1
break
else:
return 0
for j in range(i + 1, n):
factor = m[j][i] / m[i][i]
for k in range(i, n):
m[j][k] -= factor * m[i][k]
det_value *= m[i][i]
return det_value
def benchmark():
matrix = Matrix()
init_matrix(matrix, 100)
init_matrix(matrix, 300)
init_matrix(matrix, 500)
sizes = [100, 300, 500]
for size in sizes:
current_matrix = getattr(matrix, f'matrix_{size}')
start_time = time.time()
seq_result = det(current_matrix)
seq_time = time.time() - start_time
print(f"Последовательный детерминант {size}x{size}: {seq_result}, Время: {seq_time:.6f}с")
start_time = time.time()
par_result = parallel_det(current_matrix, num_threads=4) # Измените число потоков по необходимости
par_time = time.time() - start_time
print(f"Параллельный детерминант {size}x{size}: {par_result}, Время: {par_time:.6f}с")
if __name__ == "__main__":
benchmark()

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB