diff --git a/bazunov_andrew_lab_5/README.md b/bazunov_andrew_lab_5/README.md
new file mode 100644
index 0000000..f462f2b
--- /dev/null
+++ b/bazunov_andrew_lab_5/README.md
@@ -0,0 +1,95 @@
+# Распределенные вычисления и приложения Л5
+
+## _Автор Базунов Андрей Игревич ПИбд-42_
+
+---
+> ### Задание
+> - Кратко: реализовать умножение двух больших квадратных матриц.
+> - Подробно: в лабораторной работе требуется сделать два алгоритма: обычный и параллельный (задание со * - реализовать
+ это в рамках одного алгоритма). В параллельном алгоритме предусмотреть ручное задание количества потоков (число
+ потоков = 1 как раз и реализует задание со *), каждый из которых будет выполнять умножение элементов матрицы в
+ рамках своей зоны ответственности.
+---
+
+## Алгоритм умножения:
+
+### Функция умножения строки на столбец
+
+
+Код
+
+```python
+def mul_row_and_column_in_thread(queue: _QUEUE_TYPE) -> list[tuple[int | float, int]]:
+ result = []
+ while queue.qsize():
+ local_result = 0
+ row, column, place = queue.get()
+ for k in range(len(row)):
+ local_result += row[k] * column[k]
+ result.append((local_result, place))
+
+ return result
+```
+
+
+
+### Функция распределения вычислений между процессами и сборки результатов в матрицу
+
+
+Код
+
+```python
+def mul_matrixs(m1: Matrix, m2: Matrix, threads: int = 0):
+ if m1.size != m2.size:
+ return None
+
+ if threads == 0:
+ threads = 1
+
+ result = Matrix(size=m1.size, suplyer=0)
+
+ thread_queues = [Queue() for _ in range(threads)]
+ thread_iterator = 0
+
+ for row_m1, column_m2 in itertools.product(m1.rows, m2.columns):
+ thread_queues[thread_iterator].put((row_m1, column_m2, thread_iterator))
+ thread_iterator += 1
+ if thread_iterator >= threads:
+ thread_iterator = 0
+
+ with ThreadPoolExecutor(max_workers=threads) as executor:
+ flat = []
+
+ for item in executor.map(mul_row_and_column_in_thread, thread_queues):
+ flat += item
+
+ flat.sort(key=lambda x: x[1])
+ result.from_flat([*map(lambda x: x[0], flat)])
+
+ return result
+```
+
+
+
+| Размер матрицы | 1 Поток (сек) | 5 Потоков (сек) | 20 Потоков (сек) |
+|----------------|---------------|-----------------|------------------|
+| 50x50 | 0.00654 | 0.00666 | 0.00685 |
+| 100x100 | 0.03809 | 0.03753 | 0.03796 |
+| 150x150 | 0.11277 | 0.11239 | 0.11342 |
+| 200x200 | 0.24218 | 0.2474 | 0.25167 |
+| 250x250 | 0.45891 | 0.46111 | 0.46475 |
+| 300x300 | 0.80544 | 0.81466 | 0.8198 |
+| 350x350 | 1.28701 | 1.30309 | 1.32854 |
+| 400x400 | 1.93252 | 1.97905 | 2.00756 |
+| 450x450 | 2.81152 | 2.88893 | 2.94218 |
+| 500x500 | 3.87053 | 4.02238 | 4.03649 |
+| 550x550 | 5.26902 | 5.43371 | 6.10302 |
+| 600x600 | 6.82189 | 7.09791 | 7.17916 |
+| 650x650 | 8.80005 | 9.15325 | 11.26757 |
+| 700x700 | 11.04467 | 11.50241 | 12.2389 |
+| 750x750 | 13.50451 | 14.23333 | 18.4895 |
+| 800x800 | 16.5745 | 17.30878 | 20.61224 |
+| 850x850 | 19.99281 | 23.19894 | 30.13554 |
+| 900x900 | 23.48408 | 24.84928 | 31.74338 |
+| 950x950 | 27.84541 | 29.19429 | 41.40166 |
+| 1000x1000 | 32.5547 | 34.0334 | 44.55267 |
\ No newline at end of file
diff --git a/bazunov_andrew_lab_5/main.py b/bazunov_andrew_lab_5/main.py
new file mode 100644
index 0000000..9dbb3aa
--- /dev/null
+++ b/bazunov_andrew_lab_5/main.py
@@ -0,0 +1,27 @@
+import time
+from collections.abc import Callable
+
+from matrix import Matrix
+from random import random
+
+_THREADS = 20
+
+
+def measure_time(func: Callable, *args) -> float:
+ t1 = time.process_time()
+ func(*args)
+ t2 = time.process_time()
+ return round(t2 - t1, 5)
+
+
+tests = [50 * i for i in range(1, 21)]
+
+for test in tests:
+ mt1 = Matrix(size=test, suplyer=random)
+ mt2 = Matrix(size=test, suplyer=random)
+
+ t1 = measure_time(lambda: mt1 * mt2)
+ t5 = measure_time(lambda: mt1 * (mt2, 5))
+ t20 = measure_time(lambda: mt1 * (mt2, 20))
+
+ print(f"|{f'{test}x{test}':<16}|{t1:^11}|{t5:^11}|{t20:^12}|")
diff --git a/bazunov_andrew_lab_5/matrix.py b/bazunov_andrew_lab_5/matrix.py
new file mode 100644
index 0000000..a368bb9
--- /dev/null
+++ b/bazunov_andrew_lab_5/matrix.py
@@ -0,0 +1,121 @@
+import itertools
+from collections.abc import Callable
+from concurrent.futures import ThreadPoolExecutor
+from queue import Queue
+from typing import Tuple, List
+import numpy as np
+
+_SUPLYER_TYPE = Callable[[], int | float] | int | float
+_QUEUE_TYPE = Queue[Tuple[List[float | int], List[float | int], int]]
+
+
+class Matrix:
+ def __init__(self, size: int, suplyer: _SUPLYER_TYPE = 0):
+ self.__size = size
+ self.__matrix = self._generate_matrix(suplyer)
+
+ def _generate_matrix(self, suplyer: _SUPLYER_TYPE):
+ if suplyer:
+ match suplyer:
+ case int() | float():
+ return [[suplyer for _ in range(self.__size)] for _ in range(self.__size)]
+ case Callable():
+ return [[suplyer() for _ in range(self.__size)] for _ in range(self.__size)]
+ return [[0 for _ in range(self.__size)] for _ in range(self.__size)]
+
+ def from_flat(self, numbers: List[int | float]):
+ if len(numbers) != self.__size ** 2:
+ raise Exception(f"Invalid matrix size {self.__size} ^ 2 != {len(numbers)}")
+ x, y = 0, 0
+ for number in numbers:
+ self.__matrix[y][x] = number
+ x += 1
+ if x >= self.__size:
+ x = 0
+ y += 1
+
+ @property
+ def rows(self):
+ return self.__matrix
+
+ @property
+ def columns(self):
+ return [[self.__matrix[i][j] for i in range(self.__size)] for j in range(self.__size)]
+
+ @property
+ def size(self):
+ return self.__size
+
+ @staticmethod
+ def random(*, size: int):
+ import random
+ return Matrix(size=size, suplyer=random.random)
+
+ def to_numpy(self):
+ return np.array(self.__matrix)
+
+ def __eq__(self, other):
+ return (isinstance(other, Matrix)
+ and self.__size == other.__size)
+
+ def __str__(self):
+ return f"Matrix {self.__size}x{self.__size} \n" + "\n".join([str(
+ " ".join([f"{element:.5f}" for element in row])
+ ) for row in self.__matrix])
+
+ def __iter__(self):
+ return iter(self.__matrix)
+
+ def __getitem__(self, index):
+ return self.__matrix[index]
+
+ def __mul__(self, other):
+ match other:
+ case Matrix():
+ return mul_matrixs(self, other)
+ case tuple():
+ other_matrix, count_threads = other
+ return mul_matrixs(self, other_matrix, count_threads)
+ return None
+
+
+def mul_row_and_column_in_thread(queue: _QUEUE_TYPE) -> list[tuple[int | float, int]]:
+ result = []
+ while queue.qsize():
+ local_result = 0
+ row, column, place = queue.get()
+ for k in range(len(row)):
+ local_result += row[k] * column[k]
+ result.append((local_result, place))
+
+ return result
+
+
+def mul_matrixs(m1: Matrix, m2: Matrix, threads: int = 0):
+ if m1.size != m2.size:
+ return None
+
+ if threads == 0:
+ threads = 1
+
+ result = Matrix(size=m1.size, suplyer=0)
+
+ thread_queues = [Queue() for _ in range(threads)]
+ thread_iterator = 0
+
+ for row_m1, column_m2 in itertools.product(m1.rows, m2.columns):
+ thread_queues[thread_iterator].put((row_m1, column_m2, thread_iterator))
+ thread_iterator += 1
+ if thread_iterator >= threads:
+ thread_iterator = 0
+
+ with ThreadPoolExecutor(max_workers=threads) as executor:
+ flat = []
+
+ for item in executor.map(mul_row_and_column_in_thread, thread_queues):
+ flat += item
+
+ flat.sort(key=lambda x: x[1])
+ result.from_flat([*map(lambda x: x[0], flat)])
+
+ return result