201 lines
7.6 KiB
Python
201 lines
7.6 KiB
Python
|
import random
|
|||
|
import time
|
|||
|
import threading
|
|||
|
import copy
|
|||
|
from multiprocessing import Pool
|
|||
|
|
|||
|
|
|||
|
class Matrix:
|
|||
|
def __init__(self) -> None:
|
|||
|
self.matrix_100 = [[0] * 100 for _ in range(100)]
|
|||
|
self.matrix_300 = [[0] * 300 for _ in range(300)]
|
|||
|
self.matrix_500 = [[0] * 500 for _ in range(500)]
|
|||
|
|
|||
|
def str_matrix(self, type_list: str):
|
|||
|
_str = ""
|
|||
|
|
|||
|
current_matrix = getattr(self, type_list)
|
|||
|
|
|||
|
for i in range(len(current_matrix)):
|
|||
|
_str += "[ "
|
|||
|
|
|||
|
for j in range(len(current_matrix[0])):
|
|||
|
_str += str(current_matrix[i][j]) + " "
|
|||
|
|
|||
|
_str += " ]\n"
|
|||
|
|
|||
|
return _str
|
|||
|
|
|||
|
# Глобальный объект класса для хранения результата работы потоков
|
|||
|
result_matrix = copy.deepcopy(Matrix())
|
|||
|
|
|||
|
def init_matrix(matrix: Matrix, size: int):
|
|||
|
support_list_main = []
|
|||
|
|
|||
|
for i in range(size):
|
|||
|
support_list_column = []
|
|||
|
|
|||
|
for j in range(size):
|
|||
|
support_list_column.append(random.randint(0, 10))
|
|||
|
|
|||
|
support_list_main.append(support_list_column)
|
|||
|
|
|||
|
if size == 100:
|
|||
|
matrix.matrix_100 = support_list_main
|
|||
|
elif size == 300:
|
|||
|
matrix.matrix_300 = support_list_main
|
|||
|
elif size == 500:
|
|||
|
matrix.matrix_500 = support_list_main
|
|||
|
|
|||
|
|
|||
|
# Простая функция перемножения матриц
|
|||
|
def matrix_multiplication(matrix_first: Matrix, matrix_second: Matrix, type_matrix: str):
|
|||
|
result_matrix = Matrix()
|
|||
|
|
|||
|
first_matrix = getattr(matrix_first, type_matrix)
|
|||
|
second_matrix = getattr(matrix_second, type_matrix)
|
|||
|
result = getattr(result_matrix, type_matrix)
|
|||
|
|
|||
|
for i in range(len(first_matrix)):
|
|||
|
for j in range(len(second_matrix[0])):
|
|||
|
for k in range(len(second_matrix)):
|
|||
|
result[i][j] += first_matrix[i][k] * second_matrix[k][j]
|
|||
|
|
|||
|
return result_matrix
|
|||
|
|
|||
|
|
|||
|
# Функция перемножения матриц в потоке
|
|||
|
def matrix_multiplication_worker(args):
|
|||
|
first_matrix, second_matrix, type_matrix, support_index, number_thread = args
|
|||
|
global result_matrix
|
|||
|
|
|||
|
result = getattr(result_matrix, type_matrix)
|
|||
|
|
|||
|
for i in range(support_index[0], support_index[1]):
|
|||
|
for j in range(len(second_matrix[0])):
|
|||
|
for k in range(len(second_matrix)):
|
|||
|
result[i][j] += first_matrix[i - support_index[0]][k] * second_matrix[k][j]
|
|||
|
|
|||
|
return f"Worker completed task of {number_thread}"
|
|||
|
|
|||
|
def matrix_multiplication_treads(matrix_first: Matrix, matrix_second: Matrix, type_matrix: str, count_thread: int):
|
|||
|
first_matrix = getattr(matrix_first, type_matrix)
|
|||
|
second_matrix = getattr(matrix_second, type_matrix)
|
|||
|
|
|||
|
# кол-во строк с конца
|
|||
|
last_row = 0
|
|||
|
|
|||
|
if len(first_matrix) % count_thread == 0:
|
|||
|
index_rows_by_thread = len(first_matrix) // count_thread
|
|||
|
else:
|
|||
|
index_rows_by_thread = len(first_matrix) // count_thread
|
|||
|
last_row = len(first_matrix) % count_thread
|
|||
|
|
|||
|
# "распиливаем" первую матрицу на кол-во потоков. Результатом работы каждого потока будет являться часть перемноженной матрицы
|
|||
|
support_matrix = []
|
|||
|
|
|||
|
for i in range(count_thread):
|
|||
|
start_index = i * index_rows_by_thread
|
|||
|
|
|||
|
if i == count_thread - 1 and last_row > 0:
|
|||
|
end_index = start_index + last_row
|
|||
|
else:
|
|||
|
end_index = start_index + index_rows_by_thread
|
|||
|
|
|||
|
support_matrix.append((first_matrix[start_index:end_index], second_matrix, type_matrix, [start_index, end_index], i))
|
|||
|
|
|||
|
|
|||
|
# Попытка запуска нескольких ПОТОКОВ. Gil не дал получить выйгрыш, так как из-за его особенностей не давал параллельно вычислить перемножение двух матриц
|
|||
|
# формируем пул потоков
|
|||
|
# workers = [threading.Thread(target=matrix_multiplication_worker, args=(support_matrix[f], second_matrix, type_matrix, support_matrix_index[f], f), daemon=True) for f in range(count_thread)]
|
|||
|
|
|||
|
# for worker in workers:
|
|||
|
# worker.start()
|
|||
|
|
|||
|
# for worker in workers:
|
|||
|
# worker.join()
|
|||
|
|
|||
|
# Создание пула процессов и запуск параллельного выполнения
|
|||
|
with Pool(processes=count_thread) as pool:
|
|||
|
pool.map(matrix_multiplication_worker, support_matrix)
|
|||
|
|
|||
|
return "Done."
|
|||
|
|
|||
|
def run_program():
|
|||
|
matrix_first = Matrix()
|
|||
|
init_matrix(matrix_first, 100)
|
|||
|
init_matrix(matrix_first, 300)
|
|||
|
init_matrix(matrix_first, 500)
|
|||
|
|
|||
|
matrix_second = Matrix()
|
|||
|
init_matrix(matrix_second, 100)
|
|||
|
init_matrix(matrix_second, 300)
|
|||
|
init_matrix(matrix_second, 500)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication(matrix_first, matrix_second, "matrix_100")
|
|||
|
end_time = time.time()
|
|||
|
print("Time 100x100: ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_100", 3)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 100x100, 3 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_100", 5)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 100x100, 5 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_100", 8)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 100x100, 8 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
# ----------------------------------------------------------------------------------------------------
|
|||
|
print("\n" + "-" * 50 + "\n")
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication(matrix_first, matrix_second, "matrix_300")
|
|||
|
end_time = time.time()
|
|||
|
print("Time 300x300: ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_300", 3)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 300x300, 3 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_300", 5)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 300x300, 5 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_300", 8)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 300x300, 8 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
# ----------------------------------------------------------------------------------------------------
|
|||
|
print("\n" + "-" * 50 + "\n")
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication(matrix_first, matrix_second, "matrix_500")
|
|||
|
end_time = time.time()
|
|||
|
print("Time 500x500: ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_500", 3)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 500x500, 3 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_500", 5)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 500x500, 5 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
matrix_multiplication_treads(matrix_first, matrix_second, "matrix_500", 8)
|
|||
|
end_time = time.time()
|
|||
|
print("Time 500x500, 8 threads (processes): ", end_time - start_time)
|
|||
|
|
|||
|
run_program()
|