DAS_2024_1/davydov_yuriy_lab_6/main.py

84 lines
3.0 KiB
Python
Raw Normal View History

2025-01-03 16:06:36 +04:00
import random
import time
import multiprocessing
# Генерация случайной матрицы
def create_random_matrix(dim):
return [[random.randint(0, 10) for _ in range(dim)] for _ in range(dim)]
# Рекурсивное вычисление детерминанта матрицы
def compute_determinant(matrix):
size = len(matrix)
if size == 2:
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]
result = 0
for col in range(size):
submatrix = [row[:col] + row[col+1:] for row in matrix[1:]]
result += ((-1) ** col) * matrix[0][col] * compute_determinant(submatrix)
return result
# Параллельное вычисление детерминанта матрицы
def parallel_determinant_calculation(matrix, num_workers):
size = len(matrix)
if size <= 2:
return compute_determinant(matrix)
# Разделение задачи по строкам между процессами
rows_per_worker = size // num_workers
chunks = []
# Подготовка задач для рабочих процессов
for worker_id in range(num_workers):
start_row = worker_id * rows_per_worker
end_row = (worker_id + 1) * rows_per_worker if worker_id < num_workers - 1 else size
chunks.append((matrix[start_row:end_row], worker_id))
with multiprocessing.Pool(processes=num_workers) as pool:
results = pool.starmap(compute_chunk_determinant, [(matrix, chunk[0], chunk[1]) for chunk in chunks])
return sum(results)
# Вычисление детерминанта для части матрицы
def compute_chunk_determinant(matrix, chunk, chunk_id):
size = len(matrix)
result = 0
for row in chunk:
for col in range(size):
submatrix = [r[:col] + r[col+1:] for r in matrix[1:]]
result += ((-1) ** (chunk_id + col)) * matrix[0][col] * compute_determinant(submatrix)
return result
# Замер времени вычисления детерминанта
def measure_execution_time(dim, num_workers=1):
matrix = create_random_matrix(dim)
start_time = time.time()
parallel_determinant_calculation(matrix, num_workers)
execution_time = time.time() - start_time
return execution_time
def main():
# Размеры матриц
matrix_dimensions = [9, 10, 11]
# Список количества рабочих процессов
workers_list = [1, 2, 4, 6, 8]
# Печать результатов бенчмарков
print("-*" * 40)
print(f"{'Количество рабочих процессов':<25}{'|9x9 (сек.)':<20}{'|10x10 (сек.)':<20}{'|11x11 (сек.)'}")
print("-*" * 40)
for num_workers in workers_list:
row = f"{num_workers:<25}"
for dim in matrix_dimensions:
execution_time = measure_execution_time(dim, num_workers)
row += f"|{execution_time:.4f}".ljust(20)
print(row)
print("-*" * 40)
if __name__ == "__main__":
main()