DAS_2024_1/kalyshev_yan_lab_6/main.py

83 lines
2.2 KiB
Python
Raw Normal View History

2024-11-26 19:08:28 +04:00
from multiprocessing import Pool, cpu_count
import time
import numpy as np
def determinant(matrix):
matrix = np.array(matrix, dtype=float)
n = matrix.shape[0]
for i in range(n):
if matrix[i, i] == 0:
for j in range(i + 1, n):
if matrix[j, i] != 0:
matrix[[i, j]] = matrix[[j, i]]
break
if matrix[i, i] == 0:
return 0
for j in range(i + 1, n):
factor = matrix[j, i] / matrix[i, i]
matrix[j] -= factor * matrix[i]
det = 1.0
for i in range(n):
det *= matrix[i, i]
return det
def _determinant_parallel_chunk(args):
matrix, start_row, end_row = args
n = matrix.shape[0]
for i in range(start_row, end_row):
for j in range(i + 1, n):
factor = matrix[j, i] / matrix[i, i]
matrix[j] -= factor * matrix[i]
return matrix
def determinant_parallel(matrix, num_processes=None):
if num_processes is None:
num_processes = cpu_count()
matrix = np.array(matrix, dtype=float)
n = matrix.shape[0]
chunk_size = n // num_processes
tasks = [
(
matrix.copy(),
i * chunk_size,
(i + 1) * chunk_size if i != num_processes - 1 else n,
)
for i in range(num_processes)
]
with Pool(processes=num_processes) as pool:
results = pool.map(_determinant_parallel_chunk, tasks)
# В каждой части делаем лишь частичное вычитание
# Теперь выполняем окончательное вычисление детерминанта
det = 1.0
for i in range(n):
det *= results[0][i, i]
return det
sizes = [100, 300, 500]
2024-11-26 19:13:56 +04:00
NUM_PROCESSES = 12
2024-11-26 19:08:28 +04:00
for size in sizes:
A = np.random.rand(size, size)
start_time = time.time()
det_seq = determinant(A)
seq_time = time.time() - start_time
start_time = time.time()
2024-11-26 19:13:56 +04:00
det_par = determinant_parallel(A, num_processes=NUM_PROCESSES)
2024-11-26 19:08:28 +04:00
par_time = time.time() - start_time
print(
f"Size {size}x{size}: Sequential Time = {seq_time:.4f} s, Parallel Time = {par_time:.4f} s"
)