94 lines
3.2 KiB
Python
94 lines
3.2 KiB
Python
|
import time
|
|||
|
import multiprocessing
|
|||
|
import numpy as np
|
|||
|
|
|||
|
def multiply_matrices_sequential(matrix1, matrix2):
|
|||
|
rows1 = len(matrix1)
|
|||
|
cols1 = len(matrix1[0])
|
|||
|
rows2 = len(matrix2)
|
|||
|
cols2 = len(matrix2[0])
|
|||
|
|
|||
|
if cols1 != rows2:
|
|||
|
raise ValueError("Число столбцов первой матрицы должно быть равно числу строк второй матрицы.")
|
|||
|
|
|||
|
result = [[0 for _ in range(cols2)] for _ in range(rows1)]
|
|||
|
for i in range(rows1):
|
|||
|
for j in range(cols2):
|
|||
|
for k in range(cols1):
|
|||
|
result[i][j] += matrix1[i][k] * matrix2[k][j]
|
|||
|
return result
|
|||
|
|
|||
|
def multiply_matrices_parallel(matrix1, matrix2, num_processes):
|
|||
|
rows1 = len(matrix1)
|
|||
|
cols1 = len(matrix1[0])
|
|||
|
rows2 = len(matrix2)
|
|||
|
cols2 = len(matrix2[0])
|
|||
|
|
|||
|
if cols1 != rows2:
|
|||
|
raise ValueError("Число столбцов первой матрицы должно быть равно числу строк второй матрицы.")
|
|||
|
|
|||
|
chunk_size = rows1 // num_processes
|
|||
|
processes = []
|
|||
|
results = []
|
|||
|
|
|||
|
with multiprocessing.Pool(processes=num_processes) as pool:
|
|||
|
for i in range(num_processes):
|
|||
|
start_row = i * chunk_size
|
|||
|
end_row = (i + 1) * chunk_size if i < num_processes - 1 else rows1
|
|||
|
p = pool.apply_async(multiply_matrix_chunk, (matrix1, matrix2, start_row, end_row))
|
|||
|
processes.append(p)
|
|||
|
|
|||
|
for p in processes:
|
|||
|
results.append(p.get())
|
|||
|
|
|||
|
result = [[0 for _ in range(cols2)] for _ in range(rows1)]
|
|||
|
row_index = 0
|
|||
|
for sub_result in results:
|
|||
|
for row in sub_result:
|
|||
|
result[row_index] = row
|
|||
|
row_index += 1
|
|||
|
|
|||
|
return result
|
|||
|
|
|||
|
|
|||
|
def multiply_matrix_chunk(matrix1, matrix2, start_row, end_row):
|
|||
|
rows2 = len(matrix2)
|
|||
|
cols2 = len(matrix2[0])
|
|||
|
cols1 = len(matrix1[0])
|
|||
|
result = [[0 for _ in range(cols2)] for _ in range(end_row - start_row)]
|
|||
|
for i in range(end_row - start_row):
|
|||
|
for j in range(cols2):
|
|||
|
for k in range(cols1):
|
|||
|
result[i][j] += matrix1[i + start_row][k] * matrix2[k][j]
|
|||
|
return result
|
|||
|
|
|||
|
|
|||
|
def benchmark(matrix_size, num_processes):
|
|||
|
matrix1 = np.random.rand(matrix_size, matrix_size).tolist()
|
|||
|
matrix2 = np.random.rand(matrix_size, matrix_size).tolist()
|
|||
|
|
|||
|
try:
|
|||
|
start_time = time.time()
|
|||
|
sequential_result = multiply_matrices_sequential(matrix1, matrix2)
|
|||
|
end_time = time.time()
|
|||
|
sequential_time = end_time - start_time
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
parallel_result = multiply_matrices_parallel(matrix1, matrix2, num_processes)
|
|||
|
end_time = time.time()
|
|||
|
parallel_time = end_time - start_time
|
|||
|
return sequential_time, parallel_time
|
|||
|
except ValueError as e:
|
|||
|
print(f"Ошибка бенчмарка с размером матрицы {matrix_size} и {num_processes} процессов: {e}")
|
|||
|
return float('inf'), float('inf')
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
sizes = [100, 300, 500]
|
|||
|
num_processes = int(input("Введите количество потоков: "))
|
|||
|
print("Размер | Последовательно | Параллельно")
|
|||
|
|
|||
|
for size in sizes:
|
|||
|
sequential_time, parallel_time = benchmark(size, num_processes)
|
|||
|
print(f"{size:6} | {sequential_time:.4f} с \t | {parallel_time:.4f} с")
|