60 lines
1.9 KiB
Python
60 lines
1.9 KiB
Python
|
import random
|
|||
|
import time
|
|||
|
import multiprocessing
|
|||
|
import numpy as np
|
|||
|
|
|||
|
def create_random_matrix(size):
|
|||
|
return [[random.randint(0, 10) for _ in range(size)] for _ in range(size)]
|
|||
|
|
|||
|
# Функция для умножения одной строки матрицы
|
|||
|
def process_row(i, A, B, result):
|
|||
|
size = len(A)
|
|||
|
for j in range(size):
|
|||
|
for k in range(size):
|
|||
|
result[i][j] += A[i][k] * B[k][j]
|
|||
|
|
|||
|
|
|||
|
# Функция для параллельного умножения матриц с использованием multiprocessing
|
|||
|
def multiply_matrices_in_parallel(A, B, num_processes):
|
|||
|
size = len(A)
|
|||
|
result = [[0] * size for _ in range(size)]
|
|||
|
|
|||
|
with multiprocessing.Pool(processes=num_processes) as pool:
|
|||
|
pool.starmap(process_row, [(i, A, B, result) for i in range(size)])
|
|||
|
|
|||
|
return result
|
|||
|
|
|||
|
|
|||
|
# Функция для измерения времени выполнения умножения матриц
|
|||
|
def measure_execution_time(size, num_processes=1):
|
|||
|
A = create_random_matrix(size)
|
|||
|
B = create_random_matrix(size)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
multiply_matrices_in_parallel(A, B, num_processes)
|
|||
|
elapsed_time = time.time() - start_time
|
|||
|
|
|||
|
return elapsed_time
|
|||
|
|
|||
|
def main():
|
|||
|
matrix_sizes = [100, 300, 500]
|
|||
|
process_count_options = [1, 2, 4, 6, 8]
|
|||
|
|
|||
|
print("-*" * 40)
|
|||
|
print(f"{'Количество потоков':<20}{'|100x100 (сек.)':<20}{'|300x300 (сек.)':<20}{'|500x500 (сек.)'}")
|
|||
|
print("-*" * 40)
|
|||
|
|
|||
|
# Запуск тестов для разных значений числа процессов
|
|||
|
for num_processes in process_count_options:
|
|||
|
row = f"{num_processes:<20}"
|
|||
|
|
|||
|
for size in matrix_sizes:
|
|||
|
par_time = measure_execution_time(size, num_processes)
|
|||
|
row += f"|{par_time:.4f}".ljust(20)
|
|||
|
print(row)
|
|||
|
print("-*" * 40)
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
main()
|