DAS_2024_1/kosheev_maksim_lab_5/main.py

67 lines
2.2 KiB
Python
Raw Permalink Normal View History

2024-11-13 16:26:23 +04:00
import numpy as np
from multiprocessing import Pool
import time
# Генерация квадратной матрицы случайными значениями
def generate_matrix(size):
return np.random.randint(1, 10, (size, size))
# Обычное умножение матриц
def matrix_multiply_sequential(A, B):
size = A.shape[0]
C = np.zeros((size, size), dtype=int)
for i in range(size):
for j in range(size):
C[i, j] = sum(A[i, k] * B[k, j] for k in range(size))
return C
def multiply_row(args):
A, B, row = args
return np.dot(A[row, :], B)
# Параллельное умножение матриц
def parallel_matrix_multiply(A, B, num_processes):
n = A.shape[0]
C = np.zeros((n, n))
# Создаем пул процессов
with Pool(processes=num_processes) as pool:
results = pool.map(multiply_row, [(A, B, i) for i in range(n)])
# Записываем результат
for i, row in enumerate(results):
C[i, :] = row
return C
# Бенчмарк функции
def benchmark(matrix_size, num_processes_list):
A = np.random.randint(0, 10, (matrix_size, matrix_size))
B = np.random.randint(0, 10, (matrix_size, matrix_size))
# Последовательное умножение
start_time = time.time()
C_seq = np.dot(A, B)
sequential_time = time.time() - start_time
print(f"Sequential time for {matrix_size}x{matrix_size}: {sequential_time:.4f} seconds")
# Параллельное умножение
for num_processes in num_processes_list:
start_time = time.time()
C_par = parallel_matrix_multiply(A, B, num_processes)
parallel_time = time.time() - start_time
speedup = sequential_time / parallel_time
print(f"Parallel time with {num_processes} processes: {parallel_time:.4f} seconds, Speedup: {speedup:.2f}")
if __name__ == '__main__':
# Запуск бенчмарков
matrix_sizes = [100, 500, 1000, 2500, 400]
num_processes_list = [1, 2, 4, 6, 8, 12, 16]
for size in matrix_sizes:
print(f"\n--- Benchmark for {size}x{size} Matrix ---")
benchmark(size, num_processes_list)