DAS_2024_1/bogdanov_dmitry_lab_6/MatrixDet/main.py

103 lines
2.2 KiB
Python
Raw Permalink Normal View History

2024-11-11 12:42:11 +04:00
import random as rnd
import threading
import time
import concurrent.futures
from copy import deepcopy
def generateSquareMatrix(size):
return [[rnd.randint(0, 100) for i in range(size)] for j in range(size)]
def printMatrix(matrix):
for row in matrix:
print(*row, sep="\t")
testmatrix = generateSquareMatrix(500)
def process_row(args):
i, j, m, n = args
factor = m[j][i] / m[i][i]
for k in range(i, n):
m[j][k] -= factor * m[i][k]
return m[j]
def parallel_det(matrix, threadss):
n = len(matrix)
m = deepcopy(matrix)
det_value = 1
def process_row(i, j):
factor = m[j][i] / m[i][i]
for k in range(i, n):
m[j][k] -= factor * m[i][k]
for i in range(n):
if m[i][i] == 0:
for j in range(i + 1, n):
if m[j][i] != 0:
m[i], m[j] = m[j], m[i]
det_value *= -1
break
else:
return 0
with concurrent.futures.ThreadPoolExecutor(max_workers=threadss) as executor:
futures = [
executor.submit(process_row, i, j) for j in range(i + 1, n)
]
concurrent.futures.wait(futures)
det_value *= m[i][i]
return det_value
def det(matrix):
n = len(matrix)
m = [row[:] for row in matrix]
det_value = 1
for i in range(n):
if m[i][i] == 0:
for j in range(i + 1, n):
if m[j][i] != 0:
m[i], m[j] = m[j], m[i]
det_value *= -1
break
else:
return 0
for j in range(i + 1, n):
factor = m[j][i] / m[i][i]
for k in range(i, n):
m[j][k] -= factor * m[i][k]
det_value *= m[i][i]
return det_value
if __name__ == "__main__":
sizes = [100, 300, 500]
num_threads = [1, 5, 8, 12]
for size in sizes:
matrix1 = generateSquareMatrix(size)
for threads in num_threads:
start_time = time.time()
parallel_det(matrix1, threads)
end_time = time.time()
print(f"Parallel size {size}, {threads} thread(s): {end_time - start_time}s")
print("-" * 100)