DAS_2023_1/shadaev_anton_lab_5/main.py
2023-12-23 19:40:32 +04:00

73 lines
2.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
import time
import multiprocessing
def sequential_matrix_multiply(matrix_a, matrix_b):
result = np.zeros((len(matrix_a), len(matrix_b[0])))
for i in range(len(matrix_a)):
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
result[i][j] += matrix_a[i][k] * matrix_b[k][j]
return result
def parallel_matrix_multiply_worker(args):
matrix_a, matrix_b, row_start, row_end, result = args
local_result = np.zeros((row_end - row_start, len(matrix_b[0])))
for i in range(row_start, row_end):
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
local_result[i - row_start][j] += matrix_a[i][k] * matrix_b[k][j]
result.extend(local_result)
def parallel_matrix_multiply(matrix_a, matrix_b, num_processes=2):
num_rows_a = len(matrix_a)
chunk_size = num_rows_a // num_processes
processes = []
manager = multiprocessing.Manager()
result = manager.list()
for i in range(num_processes):
row_start = i * chunk_size
row_end = (i + 1) * chunk_size if i < num_processes - 1 else num_rows_a
process_args = (matrix_a, matrix_b, row_start, row_end, result)
process = multiprocessing.Process(target=parallel_matrix_multiply_worker, args=(process_args,))
processes.append(process)
for process in processes:
process.start()
for process in processes:
process.join()
return np.vstack(result)
def run_test(matrix_size, num_processes=2):
matrix_a = np.random.rand(matrix_size, matrix_size)
matrix_b = np.random.rand(matrix_size, matrix_size)
start_time = time.time()
result_sequential = sequential_matrix_multiply(matrix_a, matrix_b)
sequential_time = time.time() - start_time
print(f"Последовательноe умножение заняло ({matrix_size}x{matrix_size}): {sequential_time} секунд")
start_time = time.time()
result_parallel = parallel_matrix_multiply(matrix_a, matrix_b, num_processes)
parallel_time = time.time() - start_time
print(
f"Параллельное умножение матрицы ({matrix_size}x{matrix_size}) с {num_processes} потоками заняло: {parallel_time} секунд")
print("========================================")
# Тесты для матриц размером 100x100, 300x300 и 500x500 с разным числом процессов
# Бенчмарки для матриц размером 100, 300, 500 строк
if __name__ == '__main__':
run_test(100, num_processes=2)
run_test(100, num_processes=4)
run_test(300, num_processes=2)
run_test(300, num_processes=4)
run_test(500, num_processes=2)
run_test(500, num_processes=4)