antonov_dmitry_lab_6 #36

Merged
Alexey merged 3 commits from antonov_dmitry_lab_6 into main 2023-12-05 22:36:40 +04:00
Showing only changes of commit 7cd2022236 - Show all commits

View File

@ -0,0 +1,70 @@
import random
from multiprocessing import Pool
import time
def submatrix(matrix, row, col):
return [[matrix[i][j] for j in range(len(matrix[i])) if j != col] for i in range(len(matrix)) if i != row]
def determinant(matrix):
size = len(matrix)
# Base case: determinant of a 1x1 matrix is the only element in it
if size == 1:
return matrix[0][0]
# Base case: determinant of a 2x2 matrix
if size == 2:
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]
det = 0
for col in range(size):
det += ((-1) ** col) * matrix[0][col] * determinant(submatrix(matrix, 0, col))
return det
def generate_random_matrix(size, lower_limit, upper_limit):
return [[random.uniform(lower_limit, upper_limit) for _ in range(size)] for _ in range(size)]
def sequential_determinant_calculation(matrix_size, lower_limit, upper_limit):
random_matrix = generate_random_matrix(matrix_size, lower_limit, upper_limit)
start_time = time.time()
result = determinant(random_matrix)
end_time = time.time()
print(f"Sequential determinant: {result}")
print(f"Sequential time: {end_time - start_time} seconds")
def parallel_determinant_calculation(matrix_size, lower_limit, upper_limit, num_processes):
random_matrix = generate_random_matrix(matrix_size, lower_limit, upper_limit)
matrices_to_process = [submatrix(random_matrix, 0, col) for col in range(matrix_size)]
start_time = time.time()
with Pool(processes=num_processes) as pool:
determinants = pool.map(determinant, matrices_to_process)
result = sum(((-1) ** col) * random_matrix[0][col] * det for col, det in enumerate(determinants))
end_time = time.time()
print(f"Parallel determinant: {result}")
print(f"Parallel time: {end_time - start_time} seconds")
if __name__ == "__main__":
matrix_size = 10 # You can change this to the desired size of the matrix
lower_limit = 10 # You can change this to the lower limit of the random numbers
upper_limit = 1000 # You can change this to the upper limit of the random numbers
num_processes = 8 # You can change this to the desired number of parallel processes
# Sequential calculation
sequential_determinant_calculation(matrix_size, lower_limit, upper_limit)
# Parallel calculation
parallel_determinant_calculation(matrix_size, lower_limit, upper_limit, num_processes)