antonov_dmitry_lab_5 #35
@ -1,11 +1,12 @@
|
||||
import multiprocessing
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
import concurrent.futures
|
||||
|
||||
|
||||
def multiply_matrices(matrix_a, matrix_b):
|
||||
if len(matrix_a[0]) != len(matrix_b):
|
||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||
raise ValueError("матрицы имеют разную длину")
|
||||
|
||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||
|
||||
@ -17,29 +18,29 @@ def multiply_matrices(matrix_a, matrix_b):
|
||||
return result
|
||||
|
||||
|
||||
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
|
||||
if len(matrix_a[0]) != len(matrix_b):
|
||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||
|
||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||
futures = []
|
||||
for i in range(len(matrix_a)):
|
||||
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
|
||||
|
||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||
result[i] = future.result()
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def _multiply_row(matrix_a, matrix_b, i):
|
||||
def multiply_row(args):
|
||||
matrix_a, matrix_b, i = args
|
||||
row_result = [0 for _ in range(len(matrix_b[0]))]
|
||||
for j in range(len(matrix_b[0])):
|
||||
for k in range(len(matrix_b)):
|
||||
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
||||
return row_result
|
||||
return row_result, i
|
||||
|
||||
|
||||
def multiply_matrices_parallel(matrix_a, matrix_b, threads):
|
||||
if len(matrix_a[0]) != len(matrix_b):
|
||||
raise ValueError("матрицы имеют разную длину")
|
||||
|
||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||
|
||||
with multiprocessing.Pool(processes=threads) as pool:
|
||||
args_list = [(matrix_a, matrix_b, i) for i in range(len(matrix_a))]
|
||||
rows_results = pool.map(multiply_row, args_list)
|
||||
|
||||
for row_result, row_index in rows_results:
|
||||
result[row_index] = row_result
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def benchmark_sequential(size):
|
||||
@ -66,12 +67,12 @@ def benchmark_parallel(size, num_threads):
|
||||
|
||||
if __name__ == "__main__":
|
||||
sizes = [300]
|
||||
threads = [2, 8]
|
||||
|
||||
for size in sizes:
|
||||
sequential_time = benchmark_sequential(size)
|
||||
print(f"Время обычное: {sequential_time} с")
|
||||
print(f"Размер матрицы: {size}x{size}")
|
||||
threads = [2, 16, 32]
|
||||
#
|
||||
# for size in sizes:
|
||||
# sequential_time = benchmark_sequential(size)
|
||||
# print(f"Время обычное: {sequential_time} с")
|
||||
# print(f"Размер матрицы: {size}x{size}")
|
||||
|
||||
for thread in threads:
|
||||
for size in sizes:
|
||||
|
@ -1,3 +1,5 @@
|
||||
import multiprocessing
|
||||
|
||||
from flask import Flask, render_template, request
|
||||
import numpy as np
|
||||
import concurrent.futures
|
||||
@ -7,7 +9,7 @@ app = Flask(__name__)
|
||||
|
||||
def multiply_matrices(matrix_a, matrix_b):
|
||||
if len(matrix_a[0]) != len(matrix_b):
|
||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||
raise ValueError("матрицы имеют разную длину")
|
||||
|
||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||
|
||||
@ -18,30 +20,31 @@ def multiply_matrices(matrix_a, matrix_b):
|
||||
|
||||
return result
|
||||
|
||||
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
|
||||
if len(matrix_a[0]) != len(matrix_b):
|
||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||
|
||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||
futures = []
|
||||
for i in range(len(matrix_a)):
|
||||
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
|
||||
|
||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||
result[i] = future.result()
|
||||
|
||||
return result
|
||||
|
||||
def _multiply_row(matrix_a, matrix_b, i):
|
||||
def multiply_row(args):
|
||||
matrix_a, matrix_b, i = args
|
||||
row_result = [0 for _ in range(len(matrix_b[0]))]
|
||||
for j in range(len(matrix_b[0])):
|
||||
for k in range(len(matrix_b)):
|
||||
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
||||
return row_result
|
||||
return row_result, i
|
||||
|
||||
|
||||
def multiply_matrices_parallel(matrix_a, matrix_b, threads):
|
||||
if len(matrix_a[0]) != len(matrix_b):
|
||||
raise ValueError("матрицы имеют разную длину")
|
||||
|
||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||
|
||||
with multiprocessing.Pool(processes=threads) as pool:
|
||||
args_list = [(matrix_a, matrix_b, i) for i in range(len(matrix_a))]
|
||||
rows_results = pool.map(multiply_row, args_list)
|
||||
|
||||
for row_result, row_index in rows_results:
|
||||
result[row_index] = row_result
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
@ -59,7 +62,7 @@ def multiply():
|
||||
if operation_type == 'sequential':
|
||||
result = multiply_matrices(matrix_a, matrix_b)
|
||||
elif operation_type == 'parallel':
|
||||
result = multiply_matrices_parallel(matrix_a, matrix_b)
|
||||
result = multiply_matrices_parallel(matrix_a, matrix_b, 16)
|
||||
else:
|
||||
return "Invalid operation type"
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user