Compare commits

..

No commits in common. "266432cfda1fee7d821bde14cdcdf2164c83ab65" and "0227f5eaa02d1ee05bbeba0fff0e22dc99d88bc4" have entirely different histories.

4 changed files with 0 additions and 194 deletions

View File

@ -1,81 +0,0 @@
import numpy as np
import time
import concurrent.futures
def multiply_matrices(matrix_a, matrix_b):
if len(matrix_a[0]) != len(matrix_b):
raise ValueError("Incompatible matrix dimensions for multiplication")
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
for i in range(len(matrix_a)):
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
result[i][j] += matrix_a[i][k] * matrix_b[k][j]
return result
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
if len(matrix_a[0]) != len(matrix_b):
raise ValueError("Incompatible matrix dimensions for multiplication")
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in range(len(matrix_a)):
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
for i, future in enumerate(concurrent.futures.as_completed(futures)):
result[i] = future.result()
return result
def _multiply_row(matrix_a, matrix_b, i):
row_result = [0 for _ in range(len(matrix_b[0]))]
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
return row_result
def benchmark_sequential(size):
matrix_a = np.random.rand(size, size)
matrix_b = np.random.rand(size, size)
start_time = time.time()
multiply_matrices(matrix_a, matrix_b)
end_time = time.time()
return end_time - start_time
def benchmark_parallel(size, num_threads):
matrix_a = np.random.rand(size, size)
matrix_b = np.random.rand(size, size)
start_time = time.time()
multiply_matrices_parallel(matrix_a, matrix_b, num_threads)
end_time = time.time()
return end_time - start_time
if __name__ == "__main__":
sizes = [300]
threads = [2, 8]
for size in sizes:
sequential_time = benchmark_sequential(size)
print(f"Время обычное: {sequential_time} с")
print(f"Размер матрицы: {size}x{size}")
for thread in threads:
for size in sizes:
parallel_time = benchmark_parallel(size, thread)
print(f"Размер матрицы: {size}x{size}")
print(f"Время параллельное: {parallel_time} с")
print(f"Потоков: {thread}")

View File

@ -1,70 +0,0 @@
from flask import Flask, render_template, request
import numpy as np
import concurrent.futures
app = Flask(__name__)
def multiply_matrices(matrix_a, matrix_b):
if len(matrix_a[0]) != len(matrix_b):
raise ValueError("Incompatible matrix dimensions for multiplication")
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
for i in range(len(matrix_a)):
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
result[i][j] += matrix_a[i][k] * matrix_b[k][j]
return result
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
if len(matrix_a[0]) != len(matrix_b):
raise ValueError("Incompatible matrix dimensions for multiplication")
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in range(len(matrix_a)):
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
for i, future in enumerate(concurrent.futures.as_completed(futures)):
result[i] = future.result()
return result
def _multiply_row(matrix_a, matrix_b, i):
row_result = [0 for _ in range(len(matrix_b[0]))]
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
return row_result
@app.route('/')
def index():
return render_template('index.html')
@app.route('/multiply', methods=['POST'])
def multiply():
n = int(request.form.get('matrix_a'))
matrix_a = np.random.randint(10, size=(n, n))
matrix_b = np.random.randint(10, size=(n, n))
operation_type = request.form.get('operation_type')
if operation_type == 'sequential':
result = multiply_matrices(matrix_a, matrix_b)
elif operation_type == 'parallel':
result = multiply_matrices_parallel(matrix_a, matrix_b)
else:
return "Invalid operation type"
return render_template('result.html', matrix_a=matrix_a, matrix_b=matrix_b, result=result)
if __name__ == '__main__':
app.run(debug=True)

View File

@ -1,24 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Matrix Multiplication</title>
</head>
<body>
<h1>Matrix Multiplication</h1>
<form action="/multiply" method="post">
<label for="matrix_a">Matrix размер:</label>
<input type="text" name="matrix_a" required><br>
<label for="operation_type">Как умножить:</label>
<select name="operation_type">
<option value="sequential">Последовательно</option>
<option value="parallel">Параллельно</option>
</select><br>
<button type="submit">Умножение матриц</button>
</form>
</body>
</html>

View File

@ -1,19 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Matrix Multiplication Result</title>
</head>
<body>
<h1>Результат</h1>
<p>Matrix A:</p>
<pre>{{ matrix_a }}</pre>
<p>Matrix B:</p>
<pre>{{ matrix_b }}</pre>
<p>Result:</p>
<pre>{{ result }}</pre>
<a href="/">Назад</a>
</body>
</html>