good start2
This commit is contained in:
parent
266432cfda
commit
a4a35b5529
@ -1,11 +1,12 @@
|
|||||||
|
import multiprocessing
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import time
|
import time
|
||||||
import concurrent.futures
|
|
||||||
|
|
||||||
|
|
||||||
def multiply_matrices(matrix_a, matrix_b):
|
def multiply_matrices(matrix_a, matrix_b):
|
||||||
if len(matrix_a[0]) != len(matrix_b):
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
raise ValueError("матрицы имеют разную длину")
|
||||||
|
|
||||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
@ -17,29 +18,29 @@ def multiply_matrices(matrix_a, matrix_b):
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
|
def multiply_row(args):
|
||||||
if len(matrix_a[0]) != len(matrix_b):
|
matrix_a, matrix_b, i = args
|
||||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
|
||||||
|
|
||||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
|
||||||
|
|
||||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
||||||
futures = []
|
|
||||||
for i in range(len(matrix_a)):
|
|
||||||
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
|
|
||||||
|
|
||||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
|
||||||
result[i] = future.result()
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
def _multiply_row(matrix_a, matrix_b, i):
|
|
||||||
row_result = [0 for _ in range(len(matrix_b[0]))]
|
row_result = [0 for _ in range(len(matrix_b[0]))]
|
||||||
for j in range(len(matrix_b[0])):
|
for j in range(len(matrix_b[0])):
|
||||||
for k in range(len(matrix_b)):
|
for k in range(len(matrix_b)):
|
||||||
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
||||||
return row_result
|
return row_result, i
|
||||||
|
|
||||||
|
|
||||||
|
def multiply_matrices_parallel(matrix_a, matrix_b, threads):
|
||||||
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
|
raise ValueError("матрицы имеют разную длину")
|
||||||
|
|
||||||
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
|
with multiprocessing.Pool(processes=threads) as pool:
|
||||||
|
args_list = [(matrix_a, matrix_b, i) for i in range(len(matrix_a))]
|
||||||
|
rows_results = pool.map(multiply_row, args_list)
|
||||||
|
|
||||||
|
for row_result, row_index in rows_results:
|
||||||
|
result[row_index] = row_result
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
def benchmark_sequential(size):
|
def benchmark_sequential(size):
|
||||||
@ -66,12 +67,12 @@ def benchmark_parallel(size, num_threads):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
sizes = [300]
|
sizes = [300]
|
||||||
threads = [2, 8]
|
threads = [2, 16, 32]
|
||||||
|
#
|
||||||
for size in sizes:
|
# for size in sizes:
|
||||||
sequential_time = benchmark_sequential(size)
|
# sequential_time = benchmark_sequential(size)
|
||||||
print(f"Время обычное: {sequential_time} с")
|
# print(f"Время обычное: {sequential_time} с")
|
||||||
print(f"Размер матрицы: {size}x{size}")
|
# print(f"Размер матрицы: {size}x{size}")
|
||||||
|
|
||||||
for thread in threads:
|
for thread in threads:
|
||||||
for size in sizes:
|
for size in sizes:
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
import multiprocessing
|
||||||
|
|
||||||
from flask import Flask, render_template, request
|
from flask import Flask, render_template, request
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import concurrent.futures
|
import concurrent.futures
|
||||||
@ -7,7 +9,7 @@ app = Flask(__name__)
|
|||||||
|
|
||||||
def multiply_matrices(matrix_a, matrix_b):
|
def multiply_matrices(matrix_a, matrix_b):
|
||||||
if len(matrix_a[0]) != len(matrix_b):
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
raise ValueError("матрицы имеют разную длину")
|
||||||
|
|
||||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
@ -18,30 +20,31 @@ def multiply_matrices(matrix_a, matrix_b):
|
|||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
|
|
||||||
if len(matrix_a[0]) != len(matrix_b):
|
|
||||||
raise ValueError("Incompatible matrix dimensions for multiplication")
|
|
||||||
|
|
||||||
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
def multiply_row(args):
|
||||||
|
matrix_a, matrix_b, i = args
|
||||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
||||||
futures = []
|
|
||||||
for i in range(len(matrix_a)):
|
|
||||||
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
|
|
||||||
|
|
||||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
|
||||||
result[i] = future.result()
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def _multiply_row(matrix_a, matrix_b, i):
|
|
||||||
row_result = [0 for _ in range(len(matrix_b[0]))]
|
row_result = [0 for _ in range(len(matrix_b[0]))]
|
||||||
for j in range(len(matrix_b[0])):
|
for j in range(len(matrix_b[0])):
|
||||||
for k in range(len(matrix_b)):
|
for k in range(len(matrix_b)):
|
||||||
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
||||||
return row_result
|
return row_result, i
|
||||||
|
|
||||||
|
|
||||||
|
def multiply_matrices_parallel(matrix_a, matrix_b, threads):
|
||||||
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
|
raise ValueError("матрицы имеют разную длину")
|
||||||
|
|
||||||
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
|
with multiprocessing.Pool(processes=threads) as pool:
|
||||||
|
args_list = [(matrix_a, matrix_b, i) for i in range(len(matrix_a))]
|
||||||
|
rows_results = pool.map(multiply_row, args_list)
|
||||||
|
|
||||||
|
for row_result, row_index in rows_results:
|
||||||
|
result[row_index] = row_result
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
@app.route('/')
|
@app.route('/')
|
||||||
def index():
|
def index():
|
||||||
@ -59,7 +62,7 @@ def multiply():
|
|||||||
if operation_type == 'sequential':
|
if operation_type == 'sequential':
|
||||||
result = multiply_matrices(matrix_a, matrix_b)
|
result = multiply_matrices(matrix_a, matrix_b)
|
||||||
elif operation_type == 'parallel':
|
elif operation_type == 'parallel':
|
||||||
result = multiply_matrices_parallel(matrix_a, matrix_b)
|
result = multiply_matrices_parallel(matrix_a, matrix_b, 16)
|
||||||
else:
|
else:
|
||||||
return "Invalid operation type"
|
return "Invalid operation type"
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user