good start2

This commit is contained in:
DmitriyAntonov 2023-12-04 22:40:49 +04:00
parent f279209740
commit 266432cfda
2 changed files with 84 additions and 19 deletions

View File

@ -2,13 +2,45 @@ import numpy as np
import time import time
import concurrent.futures import concurrent.futures
def multiply_matrices(matrix_a, matrix_b):
return np.dot(matrix_a, matrix_b)
def multiply_matrices_parallel(matrix_a, matrix_b): def multiply_matrices(matrix_a, matrix_b):
with concurrent.futures.ThreadPoolExecutor() as executor: if len(matrix_a[0]) != len(matrix_b):
result = executor.submit(np.dot, matrix_a, matrix_b) raise ValueError("Incompatible matrix dimensions for multiplication")
return result.result()
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
for i in range(len(matrix_a)):
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
result[i][j] += matrix_a[i][k] * matrix_b[k][j]
return result
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
if len(matrix_a[0]) != len(matrix_b):
raise ValueError("Incompatible matrix dimensions for multiplication")
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in range(len(matrix_a)):
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
for i, future in enumerate(concurrent.futures.as_completed(futures)):
result[i] = future.result()
return result
def _multiply_row(matrix_a, matrix_b, i):
row_result = [0 for _ in range(len(matrix_b[0]))]
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
return row_result
def benchmark_sequential(size): def benchmark_sequential(size):
matrix_a = np.random.rand(size, size) matrix_a = np.random.rand(size, size)
@ -20,24 +52,30 @@ def benchmark_sequential(size):
return end_time - start_time return end_time - start_time
def benchmark_parallel(size):
def benchmark_parallel(size, num_threads):
matrix_a = np.random.rand(size, size) matrix_a = np.random.rand(size, size)
matrix_b = np.random.rand(size, size) matrix_b = np.random.rand(size, size)
start_time = time.time() start_time = time.time()
multiply_matrices_parallel(matrix_a, matrix_b) multiply_matrices_parallel(matrix_a, matrix_b, num_threads)
end_time = time.time() end_time = time.time()
return end_time - start_time return end_time - start_time
if __name__ == "__main__": if __name__ == "__main__":
sizes = [100, 300, 500, 700, 900, 1000, 1200, 1400, 1700, 2000] sizes = [300]
threads = [2, 8]
for size in sizes: for size in sizes:
sequential_time = benchmark_sequential(size) sequential_time = benchmark_sequential(size)
parallel_time = benchmark_parallel(size)
print(f"Размер матрицы: {size}x{size}")
print(f"Время обычное: {sequential_time} с") print(f"Время обычное: {sequential_time} с")
print(f"Время параллельное: {parallel_time} с") print(f"Размер матрицы: {size}x{size}")
print(f"Ускорение: {sequential_time / parallel_time}\n")
for thread in threads:
for size in sizes:
parallel_time = benchmark_parallel(size, thread)
print(f"Размер матрицы: {size}x{size}")
print(f"Время параллельное: {parallel_time} с")
print(f"Потоков: {thread}")

View File

@ -6,14 +6,41 @@ app = Flask(__name__)
def multiply_matrices(matrix_a, matrix_b): def multiply_matrices(matrix_a, matrix_b):
result = np.dot(matrix_a, matrix_b) if len(matrix_a[0]) != len(matrix_b):
raise ValueError("Incompatible matrix dimensions for multiplication")
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
for i in range(len(matrix_a)):
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
result[i][j] += matrix_a[i][k] * matrix_b[k][j]
return result return result
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
if len(matrix_a[0]) != len(matrix_b):
raise ValueError("Incompatible matrix dimensions for multiplication")
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in range(len(matrix_a)):
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
for i, future in enumerate(concurrent.futures.as_completed(futures)):
result[i] = future.result()
return result
def _multiply_row(matrix_a, matrix_b, i):
row_result = [0 for _ in range(len(matrix_b[0]))]
for j in range(len(matrix_b[0])):
for k in range(len(matrix_b)):
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
return row_result
def multiply_matrices_parallel(matrix_a, matrix_b):
with concurrent.futures.ThreadPoolExecutor() as executor:
result = executor.submit(np.dot, matrix_a, matrix_b)
return result.result()
@app.route('/') @app.route('/')