good start2
This commit is contained in:
parent
f279209740
commit
266432cfda
@ -2,13 +2,45 @@ import numpy as np
|
|||||||
import time
|
import time
|
||||||
import concurrent.futures
|
import concurrent.futures
|
||||||
|
|
||||||
def multiply_matrices(matrix_a, matrix_b):
|
|
||||||
return np.dot(matrix_a, matrix_b)
|
|
||||||
|
|
||||||
def multiply_matrices_parallel(matrix_a, matrix_b):
|
def multiply_matrices(matrix_a, matrix_b):
|
||||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
result = executor.submit(np.dot, matrix_a, matrix_b)
|
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||||
return result.result()
|
|
||||||
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
|
for i in range(len(matrix_a)):
|
||||||
|
for j in range(len(matrix_b[0])):
|
||||||
|
for k in range(len(matrix_b)):
|
||||||
|
result[i][j] += matrix_a[i][k] * matrix_b[k][j]
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
|
||||||
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
|
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||||
|
|
||||||
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||||
|
futures = []
|
||||||
|
for i in range(len(matrix_a)):
|
||||||
|
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
|
||||||
|
|
||||||
|
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||||
|
result[i] = future.result()
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def _multiply_row(matrix_a, matrix_b, i):
|
||||||
|
row_result = [0 for _ in range(len(matrix_b[0]))]
|
||||||
|
for j in range(len(matrix_b[0])):
|
||||||
|
for k in range(len(matrix_b)):
|
||||||
|
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
||||||
|
return row_result
|
||||||
|
|
||||||
|
|
||||||
def benchmark_sequential(size):
|
def benchmark_sequential(size):
|
||||||
matrix_a = np.random.rand(size, size)
|
matrix_a = np.random.rand(size, size)
|
||||||
@ -20,24 +52,30 @@ def benchmark_sequential(size):
|
|||||||
|
|
||||||
return end_time - start_time
|
return end_time - start_time
|
||||||
|
|
||||||
def benchmark_parallel(size):
|
|
||||||
|
def benchmark_parallel(size, num_threads):
|
||||||
matrix_a = np.random.rand(size, size)
|
matrix_a = np.random.rand(size, size)
|
||||||
matrix_b = np.random.rand(size, size)
|
matrix_b = np.random.rand(size, size)
|
||||||
|
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
multiply_matrices_parallel(matrix_a, matrix_b)
|
multiply_matrices_parallel(matrix_a, matrix_b, num_threads)
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
|
|
||||||
return end_time - start_time
|
return end_time - start_time
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
sizes = [100, 300, 500, 700, 900, 1000, 1200, 1400, 1700, 2000]
|
sizes = [300]
|
||||||
|
threads = [2, 8]
|
||||||
|
|
||||||
for size in sizes:
|
for size in sizes:
|
||||||
sequential_time = benchmark_sequential(size)
|
sequential_time = benchmark_sequential(size)
|
||||||
parallel_time = benchmark_parallel(size)
|
|
||||||
|
|
||||||
print(f"Размер матрицы: {size}x{size}")
|
|
||||||
print(f"Время обычное: {sequential_time} с")
|
print(f"Время обычное: {sequential_time} с")
|
||||||
print(f"Время параллельное: {parallel_time} с")
|
print(f"Размер матрицы: {size}x{size}")
|
||||||
print(f"Ускорение: {sequential_time / parallel_time}\n")
|
|
||||||
|
for thread in threads:
|
||||||
|
for size in sizes:
|
||||||
|
parallel_time = benchmark_parallel(size, thread)
|
||||||
|
print(f"Размер матрицы: {size}x{size}")
|
||||||
|
print(f"Время параллельное: {parallel_time} с")
|
||||||
|
print(f"Потоков: {thread}")
|
||||||
|
@ -6,14 +6,41 @@ app = Flask(__name__)
|
|||||||
|
|
||||||
|
|
||||||
def multiply_matrices(matrix_a, matrix_b):
|
def multiply_matrices(matrix_a, matrix_b):
|
||||||
result = np.dot(matrix_a, matrix_b)
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
|
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||||
|
|
||||||
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
|
for i in range(len(matrix_a)):
|
||||||
|
for j in range(len(matrix_b[0])):
|
||||||
|
for k in range(len(matrix_b)):
|
||||||
|
result[i][j] += matrix_a[i][k] * matrix_b[k][j]
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def multiply_matrices_parallel(matrix_a, matrix_b, num_threads):
|
||||||
|
if len(matrix_a[0]) != len(matrix_b):
|
||||||
|
raise ValueError("Incompatible matrix dimensions for multiplication")
|
||||||
|
|
||||||
|
result = [[0 for _ in range(len(matrix_b[0]))] for _ in range(len(matrix_a))]
|
||||||
|
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||||
|
futures = []
|
||||||
|
for i in range(len(matrix_a)):
|
||||||
|
futures.append(executor.submit(_multiply_row, matrix_a, matrix_b, i))
|
||||||
|
|
||||||
|
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||||
|
result[i] = future.result()
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def _multiply_row(matrix_a, matrix_b, i):
|
||||||
|
row_result = [0 for _ in range(len(matrix_b[0]))]
|
||||||
|
for j in range(len(matrix_b[0])):
|
||||||
|
for k in range(len(matrix_b)):
|
||||||
|
row_result[j] += matrix_a[i][k] * matrix_b[k][j]
|
||||||
|
return row_result
|
||||||
|
|
||||||
def multiply_matrices_parallel(matrix_a, matrix_b):
|
|
||||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
||||||
result = executor.submit(np.dot, matrix_a, matrix_b)
|
|
||||||
return result.result()
|
|
||||||
|
|
||||||
|
|
||||||
@app.route('/')
|
@app.route('/')
|
||||||
|
Loading…
Reference in New Issue
Block a user