75 lines
2.2 KiB
Python
75 lines
2.2 KiB
Python
|
import multiprocessing
|
||
|
import numpy as np
|
||
|
import time
|
||
|
|
||
|
def sequential_multiply_matrix(A, B):
|
||
|
rows_A = len(A)
|
||
|
cols_A = len(A[0])
|
||
|
rows_B = len(B)
|
||
|
cols_B = len(B[0])
|
||
|
|
||
|
if cols_A != rows_B:
|
||
|
print("Умножение матриц невозможно.")
|
||
|
return
|
||
|
|
||
|
result_matrix = [[0 for row in range(cols_B)] for col in range(rows_A)]
|
||
|
|
||
|
for i in range(rows_A):
|
||
|
for j in range(cols_B):
|
||
|
for k in range(cols_A):
|
||
|
result_matrix[i][j] += A[i][k] * B[k][j]
|
||
|
|
||
|
return result_matrix
|
||
|
|
||
|
def parallel_multiply_matrix(A, B, num_processes):
|
||
|
rows_A = len(A)
|
||
|
cols_A = len(A[0])
|
||
|
rows_B = len(B)
|
||
|
cols_B = len(B[0])
|
||
|
|
||
|
if cols_A != rows_B:
|
||
|
print("Умножение матриц невозможно.")
|
||
|
return
|
||
|
|
||
|
result_matrix = [[0 for row in range(cols_B)] for col in range(rows_A)]
|
||
|
|
||
|
chunk_size = int(rows_A / num_processes)
|
||
|
|
||
|
processes = []
|
||
|
for i in range(num_processes):
|
||
|
start = chunk_size * i
|
||
|
end = chunk_size * (i + 1) if i < num_processes - 1 else rows_A
|
||
|
|
||
|
p = multiprocessing.Process(target=perform_multiplication, args=(A, B, result_matrix, start, end))
|
||
|
processes.append(p)
|
||
|
p.start()
|
||
|
|
||
|
for p in processes:
|
||
|
p.join()
|
||
|
|
||
|
return result_matrix
|
||
|
|
||
|
def perform_multiplication(A, B, result_matrix, start, end):
|
||
|
for i in range(start, end):
|
||
|
for j in range(len(B[0])):
|
||
|
for k in range(len(A[0])):
|
||
|
result_matrix[i][j] += A[i][k] * B[k][j]
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
matrix_sizes = [100, 300, 500]
|
||
|
num_processes = 4
|
||
|
|
||
|
for n in matrix_sizes:
|
||
|
matrix_A = np.random.randint(10, size=(n, n))
|
||
|
matrix_B = np.random.randint(10, size=(n, n))
|
||
|
|
||
|
start_time = time.time()
|
||
|
sequential_result = sequential_multiply_matrix(matrix_A, matrix_B)
|
||
|
end_time = time.time()
|
||
|
print(f"Последовательное умножение {n}x{n} матриц заняло: {end_time - start_time} секунд")
|
||
|
|
||
|
start_time = time.time()
|
||
|
parallel_result = parallel_multiply_matrix(matrix_A, matrix_B, num_processes)
|
||
|
end_time = time.time()
|
||
|
print(f"Параллельное умножение {n}x{n} матриц заняло: {end_time - start_time}")
|