59 lines
1.9 KiB
Python
Raw Normal View History

2024-01-22 02:23:54 +04:00
import numpy as np
import time
from concurrent.futures import ThreadPoolExecutor
def sequential_determinant(matrix):
return np.linalg.det(matrix)
def parallel_determinant(matrix, num_threads):
determinant = 1.0
n = len(matrix)
def calculate_partial_determinant(start, end):
nonlocal determinant
for i in range(start, end):
determinant *= matrix[i, i]
with ThreadPoolExecutor(max_workers=num_threads) as executor:
chunk_size = n // num_threads
futures = []
for i in range(0, n, chunk_size):
start = i
end = min(i + chunk_size, n)
futures.append(executor.submit(calculate_partial_determinant, start, end))
# Wait for all threads to finish
for future in futures:
future.result()
return determinant
def benchmark(matrix_size, num_threads=1):
matrix = np.random.rand(matrix_size, matrix_size)
start_time = time.time()
sequential_result = sequential_determinant(matrix)
sequential_time = time.time() - start_time
start_time = time.time()
parallel_result = parallel_determinant(matrix, num_threads)
parallel_time = time.time() - start_time
return sequential_time, parallel_time
# Пример использования для матриц размером 100x100, 300x300, 500x500 элементов
matrix_sizes = [100, 300, 500]
num_threads = 1 # Указать желаемое количество потоков
for size in matrix_sizes:
sequential_time, parallel_time = benchmark(size, num_threads)
print(f"Размер матрицы: {size}x{size}")
print(f"Время с последовательным выполнением: {sequential_time:.6f} секунд")
print(f"Время с параллельной обработкой ({num_threads} потоков): {parallel_time:.6f} секунд")
print("=" * 30)