AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/tsa/innovations/arma_innovations.py
2024-10-02 22:15:59 +04:00

277 lines
9.6 KiB
Python

import numpy as np
from statsmodels.tsa import arima_process
from statsmodels.tsa.statespace.tools import prefix_dtype_map
from statsmodels.tools.numdiff import _get_epsilon, approx_fprime_cs
from scipy.linalg.blas import find_best_blas_type
from . import _arma_innovations
NON_STATIONARY_ERROR = """\
The model's autoregressive parameters (ar_params) indicate that the process
is non-stationary. The innovations algorithm cannot be used.
"""
def arma_innovations(endog, ar_params=None, ma_params=None, sigma2=1,
normalize=False, prefix=None):
"""
Compute innovations using a given ARMA process.
Parameters
----------
endog : ndarray
The observed time-series process, may be univariate or multivariate.
ar_params : ndarray, optional
Autoregressive parameters.
ma_params : ndarray, optional
Moving average parameters.
sigma2 : ndarray, optional
The ARMA innovation variance. Default is 1.
normalize : bool, optional
Whether or not to normalize the returned innovations. Default is False.
prefix : str, optional
The BLAS prefix associated with the datatype. Default is to find the
best datatype based on given input. This argument is typically only
used internally.
Returns
-------
innovations : ndarray
Innovations (one-step-ahead prediction errors) for the given `endog`
series with predictions based on the given ARMA process. If
`normalize=True`, then the returned innovations have been "whitened" by
dividing through by the square root of the mean square error.
innovations_mse : ndarray
Mean square error for the innovations.
"""
# Parameters
endog = np.require(endog, requirements="WC")
squeezed = endog.ndim == 1
if squeezed:
endog = endog[:, None]
ar_params = np.atleast_1d([] if ar_params is None else ar_params)
ma_params = np.atleast_1d([] if ma_params is None else ma_params)
nobs, k_endog = endog.shape
ar = np.r_[1, -ar_params]
ma = np.r_[1, ma_params]
# Get BLAS prefix
if prefix is None:
prefix, dtype, _ = find_best_blas_type(
[endog, ar_params, ma_params, np.array(sigma2)])
dtype = prefix_dtype_map[prefix]
# Make arrays contiguous for BLAS calls
endog = np.asfortranarray(endog, dtype=dtype)
ar_params = np.asfortranarray(ar_params, dtype=dtype)
ma_params = np.asfortranarray(ma_params, dtype=dtype)
sigma2 = dtype(sigma2).item()
# Get the appropriate functions
arma_transformed_acovf_fast = getattr(
_arma_innovations, prefix + 'arma_transformed_acovf_fast')
arma_innovations_algo_fast = getattr(
_arma_innovations, prefix + 'arma_innovations_algo_fast')
arma_innovations_filter = getattr(
_arma_innovations, prefix + 'arma_innovations_filter')
# Run the innovations algorithm for ARMA coefficients
arma_acovf = arima_process.arma_acovf(ar, ma,
sigma2=sigma2, nobs=nobs) / sigma2
acovf, acovf2 = arma_transformed_acovf_fast(ar, ma, arma_acovf)
theta, v = arma_innovations_algo_fast(nobs, ar_params, ma_params,
acovf, acovf2)
v = np.array(v)
if (np.any(v < 0) or
not np.isfinite(theta).all() or
not np.isfinite(v).all()):
# This is defensive code that is hard to hit
raise ValueError(NON_STATIONARY_ERROR)
# Run the innovations filter across each series
u = []
for i in range(k_endog):
u_i = np.array(arma_innovations_filter(endog[:, i], ar_params,
ma_params, theta))
u.append(u_i)
u = np.vstack(u).T
if normalize:
u /= v[:, None]**0.5
# Post-processing
if squeezed:
u = u.squeeze()
return u, v
def arma_loglike(endog, ar_params=None, ma_params=None, sigma2=1, prefix=None):
"""
Compute the log-likelihood of the given data assuming an ARMA process.
Parameters
----------
endog : ndarray
The observed time-series process.
ar_params : ndarray, optional
Autoregressive parameters.
ma_params : ndarray, optional
Moving average parameters.
sigma2 : ndarray, optional
The ARMA innovation variance. Default is 1.
prefix : str, optional
The BLAS prefix associated with the datatype. Default is to find the
best datatype based on given input. This argument is typically only
used internally.
Returns
-------
float
The joint loglikelihood.
"""
llf_obs = arma_loglikeobs(endog, ar_params=ar_params, ma_params=ma_params,
sigma2=sigma2, prefix=prefix)
return np.sum(llf_obs)
def arma_loglikeobs(endog, ar_params=None, ma_params=None, sigma2=1,
prefix=None):
"""
Compute the log-likelihood for each observation assuming an ARMA process.
Parameters
----------
endog : ndarray
The observed time-series process.
ar_params : ndarray, optional
Autoregressive parameters.
ma_params : ndarray, optional
Moving average parameters.
sigma2 : ndarray, optional
The ARMA innovation variance. Default is 1.
prefix : str, optional
The BLAS prefix associated with the datatype. Default is to find the
best datatype based on given input. This argument is typically only
used internally.
Returns
-------
ndarray
Array of loglikelihood values for each observation.
"""
endog = np.array(endog)
ar_params = np.atleast_1d([] if ar_params is None else ar_params)
ma_params = np.atleast_1d([] if ma_params is None else ma_params)
if prefix is None:
prefix, dtype, _ = find_best_blas_type(
[endog, ar_params, ma_params, np.array(sigma2)])
dtype = prefix_dtype_map[prefix]
endog = np.ascontiguousarray(endog, dtype=dtype)
ar_params = np.asfortranarray(ar_params, dtype=dtype)
ma_params = np.asfortranarray(ma_params, dtype=dtype)
sigma2 = dtype(sigma2).item()
func = getattr(_arma_innovations, prefix + 'arma_loglikeobs_fast')
return func(endog, ar_params, ma_params, sigma2)
def arma_score(endog, ar_params=None, ma_params=None, sigma2=1,
prefix=None):
"""
Compute the score (gradient of the log-likelihood function).
Parameters
----------
endog : ndarray
The observed time-series process.
ar_params : ndarray, optional
Autoregressive coefficients, not including the zero lag.
ma_params : ndarray, optional
Moving average coefficients, not including the zero lag, where the sign
convention assumes the coefficients are part of the lag polynomial on
the right-hand-side of the ARMA definition (i.e. they have the same
sign from the usual econometrics convention in which the coefficients
are on the right-hand-side of the ARMA definition).
sigma2 : ndarray, optional
The ARMA innovation variance. Default is 1.
prefix : str, optional
The BLAS prefix associated with the datatype. Default is to find the
best datatype based on given input. This argument is typically only
used internally.
Returns
-------
ndarray
Score, evaluated at the given parameters.
Notes
-----
This is a numerical approximation, calculated using first-order complex
step differentiation on the `arma_loglike` method.
"""
ar_params = [] if ar_params is None else ar_params
ma_params = [] if ma_params is None else ma_params
p = len(ar_params)
q = len(ma_params)
def func(params):
return arma_loglike(endog, params[:p], params[p:p + q], params[p + q:])
params0 = np.r_[ar_params, ma_params, sigma2]
epsilon = _get_epsilon(params0, 2., None, len(params0))
return approx_fprime_cs(params0, func, epsilon)
def arma_scoreobs(endog, ar_params=None, ma_params=None, sigma2=1,
prefix=None):
"""
Compute the score (gradient) per observation.
Parameters
----------
endog : ndarray
The observed time-series process.
ar_params : ndarray, optional
Autoregressive coefficients, not including the zero lag.
ma_params : ndarray, optional
Moving average coefficients, not including the zero lag, where the sign
convention assumes the coefficients are part of the lag polynomial on
the right-hand-side of the ARMA definition (i.e. they have the same
sign from the usual econometrics convention in which the coefficients
are on the right-hand-side of the ARMA definition).
sigma2 : ndarray, optional
The ARMA innovation variance. Default is 1.
prefix : str, optional
The BLAS prefix associated with the datatype. Default is to find the
best datatype based on given input. This argument is typically only
used internally.
Returns
-------
ndarray
Score per observation, evaluated at the given parameters.
Notes
-----
This is a numerical approximation, calculated using first-order complex
step differentiation on the `arma_loglike` method.
"""
ar_params = [] if ar_params is None else ar_params
ma_params = [] if ma_params is None else ma_params
p = len(ar_params)
q = len(ma_params)
def func(params):
return arma_loglikeobs(endog, params[:p], params[p:p + q],
params[p + q:])
params0 = np.r_[ar_params, ma_params, sigma2]
epsilon = _get_epsilon(params0, 2., None, len(params0))
return approx_fprime_cs(params0, func, epsilon)