AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/stats/base.py
2024-10-02 22:15:59 +04:00

129 lines
4.0 KiB
Python

"""Base classes for statistical test results
Created on Mon Apr 22 14:03:21 2013
Author: Josef Perktold
"""
from statsmodels.compat.python import lzip
import numpy as np
from statsmodels.tools.testing import Holder
class HolderTuple(Holder):
"""Holder class with indexing
"""
def __init__(self, tuple_=None, **kwds):
super().__init__(**kwds)
if tuple_ is not None:
self.tuple = tuple(getattr(self, att) for att in tuple_)
else:
self.tuple = (self.statistic, self.pvalue)
def __iter__(self):
yield from self.tuple
def __getitem__(self, idx):
return self.tuple[idx]
def __len__(self):
return len(self.tuple)
def __array__(self, dtype=None, copy=True):
return np.array(list(self.tuple), dtype=dtype, copy=copy)
class AllPairsResults:
'''Results class for pairwise comparisons, based on p-values
Parameters
----------
pvals_raw : array_like, 1-D
p-values from a pairwise comparison test
all_pairs : list of tuples
list of indices, one pair for each comparison
multitest_method : str
method that is used by default for p-value correction. This is used
as default by the methods like if the multiple-testing method is not
specified as argument.
levels : {list[str], None}
optional names of the levels or groups
n_levels : None or int
If None, then the number of levels or groups is inferred from the
other arguments. It can be explicitly specified, if the inferred
number is incorrect.
Notes
-----
This class can also be used for other pairwise comparisons, for example
comparing several treatments to a control (as in Dunnet's test).
'''
def __init__(self, pvals_raw, all_pairs, multitest_method='hs',
levels=None, n_levels=None):
self.pvals_raw = pvals_raw
self.all_pairs = all_pairs
if n_levels is None:
# for all_pairs nobs*(nobs-1)/2
self.n_levels = np.max(all_pairs) + 1
else:
self.n_levels = n_levels
self.multitest_method = multitest_method
self.levels = levels
if levels is None:
self.all_pairs_names = [
f'{pairs!r}' for pairs in all_pairs
]
else:
self.all_pairs_names = [
'{}-{}'.format(
levels[pairs[0]], levels[pairs[1]]
) for pairs in all_pairs
]
def pval_corrected(self, method=None):
'''p-values corrected for multiple testing problem
This uses the default p-value correction of the instance stored in
``self.multitest_method`` if method is None.
'''
import statsmodels.stats.multitest as smt
if method is None:
method = self.multitest_method
# TODO: breaks with method=None
return smt.multipletests(self.pvals_raw, method=method)[1]
def __str__(self):
return self.summary()
def pval_table(self):
'''create a (n_levels, n_levels) array with corrected p_values
this needs to improve, similar to R pairwise output
'''
k = self.n_levels
pvals_mat = np.zeros((k, k))
# if we do not assume we have all pairs
pvals_mat[lzip(*self.all_pairs)] = self.pval_corrected()
return pvals_mat
def summary(self):
'''returns text summarizing the results
uses the default pvalue correction of the instance stored in
``self.multitest_method``
'''
import statsmodels.stats.multitest as smt
maxlevel = max(len(ss) for ss in self.all_pairs_names)
text = ('Corrected p-values using %s p-value correction\n\n'
% smt.multitest_methods_names[self.multitest_method])
text += 'Pairs' + (' ' * (maxlevel - 5 + 1)) + 'p-values\n'
text += '\n'.join(f'{pairs} {pv:6.4g}' for (pairs, pv) in
zip(self.all_pairs_names, self.pval_corrected()))
return text