AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/mcevaluate/arma.py
2024-10-02 22:15:59 +04:00

147 lines
4.4 KiB
Python

import numpy as np
from statsmodels.tsa.arima_process import arma_generate_sample
from statsmodels.tsa.arma_mle import Arma
#TODO: still refactoring problem with cov_x
#copied from sandbox.tsa.arima.py
def mcarma22(niter=10, nsample=1000, ar=None, ma=None, sig=0.5):
'''run Monte Carlo for ARMA(2,2)
DGP parameters currently hard coded
also sample size `nsample`
was not a self contained function, used instances from outer scope
now corrected
'''
#nsample = 1000
#ar = [1.0, 0, 0]
if ar is None:
ar = [1.0, -0.55, -0.1]
#ma = [1.0, 0, 0]
if ma is None:
ma = [1.0, 0.3, 0.2]
results = []
results_bse = []
for _ in range(niter):
y2 = arma_generate_sample(ar,ma,nsample+1000, sig)[-nsample:]
y2 -= y2.mean()
arest2 = Arma(y2)
rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,2))
results.append(rhohat2a)
err2a = arest2.geterrors(rhohat2a)
sige2a = np.sqrt(np.dot(err2a,err2a)/nsample)
#print('sige2a', sige2a,
#print('cov_x2a.shape', cov_x2a.shape
#results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a)))
if cov_x2a is not None:
results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a)))
else:
results_bse.append(np.nan + np.zeros_like(rhohat2a))
return np.r_[ar[1:], ma[1:]], np.array(results), np.array(results_bse)
def mc_summary(res, rt=None):
if rt is None:
rt = np.zeros(res.shape[1])
nanrows = np.isnan(res).any(1)
print('fractions of iterations with nans', nanrows.mean())
res = res[~nanrows]
print('RMSE')
print(np.sqrt(((res-rt)**2).mean(0)))
print('mean bias')
print((res-rt).mean(0))
print('median bias')
print(np.median((res-rt),0))
print('median bias percent')
print(np.median((res-rt)/rt*100,0))
print('median absolute error')
print(np.median(np.abs(res-rt),0))
print('positive error fraction')
print((res > rt).mean(0))
if __name__ == '__main__':
#short version
# true, est, bse = mcarma22(niter=50)
# print(true
# #print(est
# print(est.mean(0)
''' niter 50, sample size=1000, 2 runs
[-0.55 -0.1 0.3 0.2 ]
[-0.542401 -0.09904305 0.30840599 0.2052473 ]
[-0.55 -0.1 0.3 0.2 ]
[-0.54681176 -0.09742921 0.2996297 0.20624258]
niter=50, sample size=200, 3 runs
[-0.55 -0.1 0.3 0.2 ]
[-0.64669489 -0.01134491 0.19972259 0.20634019]
[-0.55 -0.1 0.3 0.2 ]
[-0.53141595 -0.10653234 0.32297968 0.20505973]
[-0.55 -0.1 0.3 0.2 ]
[-0.50244588 -0.125455 0.33867488 0.19498214]
niter=50, sample size=100, 5 runs --> ar1 too low, ma1 too high
[-0.55 -0.1 0.3 0.2 ]
[-0.35715008 -0.23392766 0.48771794 0.21901059]
[-0.55 -0.1 0.3 0.2 ]
[-0.3554852 -0.21581914 0.51744748 0.24759245]
[-0.55 -0.1 0.3 0.2 ]
[-0.3737861 -0.24665911 0.48031939 0.17274438]
[-0.55 -0.1 0.3 0.2 ]
[-0.30015385 -0.27705506 0.56168199 0.21995759]
[-0.55 -0.1 0.3 0.2 ]
[-0.35879991 -0.22999604 0.4761953 0.19670835]
new version, with burnin 1000 in DGP and demean
[-0.55 -0.1 0.3 0.2 ]
[-0.56770228 -0.00076025 0.25621825 0.24492449]
[-0.55 -0.1 0.3 0.2 ]
[-0.27598305 -0.2312364 0.57599134 0.23582417]
[-0.55 -0.1 0.3 0.2 ]
[-0.38059051 -0.17413628 0.45147109 0.20046776]
[-0.55 -0.1 0.3 0.2 ]
[-0.47789765 -0.08650743 0.3554441 0.24196087]
'''
ar = [1.0, -0.55, -0.1]
ma = [1.0, 0.3, 0.2]
nsample = 200
run_mc = True#False
if run_mc:
for sig in [0.1, 0.5, 1.]:
import time
t0 = time.time()
rt, res_rho, res_bse = mcarma22(niter=100, sig=sig)
print('\nResults for Monte Carlo')
print('true')
print(rt)
print('nsample =', nsample, 'sigma = ', sig)
print('elapsed time for Monte Carlo', time.time()-t0)
# 20 seconds for ARMA(2,2), 1000 iterations with 1000 observations
#sige2a = np.sqrt(np.dot(err2a,err2a)/nsample)
#print('\nbse of one sample'
#print(sige2a * np.sqrt(np.diag(cov_x2a))
print('\nMC of rho versus true')
mc_summary(res_rho, rt)
print('\nMC of bse versus zero') # this implies inf in percent
mc_summary(res_bse)
print('\nMC of bse versus std')
mc_summary(res_bse, res_rho.std(0))