AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/robust/tests/test_rlm.py
2024-10-02 22:15:59 +04:00

389 lines
12 KiB
Python

"""
Test functions for sm.rlm
"""
import warnings
import numpy as np
from numpy.testing import assert_allclose, assert_almost_equal
import pytest
from scipy import stats
import statsmodels.api as sm
from statsmodels.robust import norms
from statsmodels.robust.robust_linear_model import RLM
from statsmodels.robust.scale import HuberScale
DECIMAL_4 = 4
DECIMAL_3 = 3
DECIMAL_2 = 2
DECIMAL_1 = 1
def load_stackloss():
from statsmodels.datasets.stackloss import load
data = load()
data.endog = np.asarray(data.endog)
data.exog = np.asarray(data.exog)
return data
class CheckRlmResultsMixin:
'''
res2 contains results from Rmodelwrap or were obtained from a statistical
packages such as R, Stata, or SAS and written to results.results_rlm
Covariance matrices were obtained from SAS and are imported from
results.results_rlm
'''
def test_params(self):
assert_almost_equal(self.res1.params, self.res2.params, DECIMAL_4)
decimal_standarderrors = DECIMAL_4
def test_standarderrors(self):
assert_almost_equal(self.res1.bse, self.res2.bse,
self.decimal_standarderrors)
# TODO: get other results from SAS, though if it works for one...
def test_confidenceintervals(self):
if not hasattr(self.res2, 'conf_int'):
pytest.skip("Results from R")
assert_almost_equal(self.res1.conf_int(), self.res2.conf_int(),
DECIMAL_4)
decimal_scale = DECIMAL_4
def test_scale(self):
assert_almost_equal(self.res1.scale, self.res2.scale,
self.decimal_scale)
def test_weights(self):
assert_almost_equal(self.res1.weights, self.res2.weights, DECIMAL_4)
def test_residuals(self):
assert_almost_equal(self.res1.resid, self.res2.resid, DECIMAL_4)
def test_degrees(self):
assert_almost_equal(self.res1.model.df_model, self.res2.df_model,
DECIMAL_4)
assert_almost_equal(self.res1.model.df_resid, self.res2.df_resid,
DECIMAL_4)
def test_bcov_unscaled(self):
if not hasattr(self.res2, 'bcov_unscaled'):
pytest.skip("No unscaled cov matrix from SAS")
assert_almost_equal(self.res1.bcov_unscaled,
self.res2.bcov_unscaled, DECIMAL_4)
decimal_bcov_scaled = DECIMAL_4
def test_bcov_scaled(self):
assert_almost_equal(self.res1.bcov_scaled, self.res2.h1,
self.decimal_bcov_scaled)
assert_almost_equal(self.res1.h2, self.res2.h2,
self.decimal_bcov_scaled)
assert_almost_equal(self.res1.h3, self.res2.h3,
self.decimal_bcov_scaled)
def test_tvalues(self):
if not hasattr(self.res2, 'tvalues'):
pytest.skip("No tvalues in benchmark")
assert_allclose(self.res1.tvalues, self.res2.tvalues, rtol=0.003)
def test_tpvalues(self):
# test comparing tvalues and pvalues with normal implementation
# make sure they use normal distribution (inherited in results class)
params = self.res1.params
tvalues = params / self.res1.bse
pvalues = stats.norm.sf(np.abs(tvalues)) * 2
half_width = stats.norm.isf(0.025) * self.res1.bse
conf_int = np.column_stack((params - half_width, params + half_width))
assert_almost_equal(self.res1.tvalues, tvalues)
assert_almost_equal(self.res1.pvalues, pvalues)
assert_almost_equal(self.res1.conf_int(), conf_int)
class TestRlm(CheckRlmResultsMixin):
@classmethod
def setup_class(cls):
cls.data = load_stackloss() # class attributes for subclasses
cls.data.exog = sm.add_constant(cls.data.exog, prepend=False)
# Test precisions
cls.decimal_standarderrors = DECIMAL_1
cls.decimal_scale = DECIMAL_3
model = RLM(cls.data.endog, cls.data.exog, M=norms.HuberT())
cls.model = model
results = model.fit()
h2 = model.fit(cov="H2").bcov_scaled
h3 = model.fit(cov="H3").bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import Huber
self.res2 = Huber()
@pytest.mark.smoke
def test_summary(self):
self.res1.summary()
@pytest.mark.smoke
def test_summary2(self):
self.res1.summary2()
@pytest.mark.smoke
def test_chisq(self):
assert isinstance(self.res1.chisq, np.ndarray)
@pytest.mark.smoke
def test_predict(self):
assert isinstance(self.model.predict(self.res1.params), np.ndarray)
class TestHampel(TestRlm):
@classmethod
def setup_class(cls):
super().setup_class()
# Test precisions
cls.decimal_standarderrors = DECIMAL_2
cls.decimal_scale = DECIMAL_3
cls.decimal_bcov_scaled = DECIMAL_3
model = RLM(cls.data.endog, cls.data.exog, M=norms.Hampel())
results = model.fit()
h2 = model.fit(cov="H2").bcov_scaled
h3 = model.fit(cov="H3").bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import Hampel
self.res2 = Hampel()
class TestRlmBisquare(TestRlm):
@classmethod
def setup_class(cls):
super().setup_class()
# Test precisions
cls.decimal_standarderrors = DECIMAL_1
model = RLM(cls.data.endog, cls.data.exog, M=norms.TukeyBiweight())
results = model.fit()
h2 = model.fit(cov="H2").bcov_scaled
h3 = model.fit(cov="H3").bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import BiSquare
self.res2 = BiSquare()
class TestRlmAndrews(TestRlm):
@classmethod
def setup_class(cls):
super().setup_class()
model = RLM(cls.data.endog, cls.data.exog, M=norms.AndrewWave())
results = model.fit()
h2 = model.fit(cov="H2").bcov_scaled
h3 = model.fit(cov="H3").bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import Andrews
self.res2 = Andrews()
# --------------------------------------------------------------------
# tests with Huber scaling
class TestRlmHuber(CheckRlmResultsMixin):
@classmethod
def setup_class(cls):
cls.data = load_stackloss()
cls.data.exog = sm.add_constant(cls.data.exog, prepend=False)
model = RLM(cls.data.endog, cls.data.exog, M=norms.HuberT())
results = model.fit(scale_est=HuberScale())
h2 = model.fit(cov="H2", scale_est=HuberScale()).bcov_scaled
h3 = model.fit(cov="H3", scale_est=HuberScale()).bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import HuberHuber
self.res2 = HuberHuber()
class TestHampelHuber(TestRlm):
@classmethod
def setup_class(cls):
super().setup_class()
model = RLM(cls.data.endog, cls.data.exog, M=norms.Hampel())
results = model.fit(scale_est=HuberScale())
h2 = model.fit(cov="H2", scale_est=HuberScale()).bcov_scaled
h3 = model.fit(cov="H3", scale_est=HuberScale()).bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import HampelHuber
self.res2 = HampelHuber()
class TestRlmBisquareHuber(TestRlm):
@classmethod
def setup_class(cls):
super().setup_class()
model = RLM(cls.data.endog, cls.data.exog, M=norms.TukeyBiweight())
results = model.fit(scale_est=HuberScale())
h2 = model.fit(cov="H2", scale_est=HuberScale()).bcov_scaled
h3 = model.fit(cov="H3", scale_est=HuberScale()).bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import BisquareHuber
self.res2 = BisquareHuber()
class TestRlmAndrewsHuber(TestRlm):
@classmethod
def setup_class(cls):
super().setup_class()
model = RLM(cls.data.endog, cls.data.exog, M=norms.AndrewWave())
results = model.fit(scale_est=HuberScale())
h2 = model.fit(cov="H2", scale_est=HuberScale()).bcov_scaled
h3 = model.fit(cov="H3", scale_est=HuberScale()).bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import AndrewsHuber
self.res2 = AndrewsHuber()
class TestRlmSresid(CheckRlmResultsMixin):
# Check GH#187
@classmethod
def setup_class(cls):
cls.data = load_stackloss() # class attributes for subclasses
cls.data.exog = sm.add_constant(cls.data.exog, prepend=False)
# Test precisions
cls.decimal_standarderrors = DECIMAL_1
cls.decimal_scale = DECIMAL_3
model = RLM(cls.data.endog, cls.data.exog, M=norms.HuberT())
results = model.fit(conv='sresid')
h2 = model.fit(cov="H2").bcov_scaled
h3 = model.fit(cov="H3").bcov_scaled
cls.res1 = results
cls.res1.h2 = h2
cls.res1.h3 = h3
def setup_method(self):
from .results.results_rlm import Huber
self.res2 = Huber()
@pytest.mark.smoke
def test_missing():
# see GH#2083
import statsmodels.formula.api as smf
d = {'Foo': [1, 2, 10, 149], 'Bar': [1, 2, 3, np.nan]}
smf.rlm('Foo ~ Bar', data=d)
def test_rlm_start_values():
data = sm.datasets.stackloss.load_pandas()
exog = sm.add_constant(data.exog, prepend=False)
model = RLM(data.endog, exog, M=norms.HuberT())
results = model.fit()
start_params = [0.7156402, 1.29528612, -0.15212252, -39.91967442]
result_sv = model.fit(start_params=start_params)
assert_allclose(results.params, result_sv.params)
def test_rlm_start_values_errors():
data = sm.datasets.stackloss.load_pandas()
exog = sm.add_constant(data.exog, prepend=False)
model = RLM(data.endog, exog, M=norms.HuberT())
start_params = [0.7156402, 1.29528612, -0.15212252]
with pytest.raises(ValueError):
model.fit(start_params=start_params)
start_params = np.array([start_params, start_params]).T
with pytest.raises(ValueError):
model.fit(start_params=start_params)
@pytest.fixture(scope='module',
params=[norms.AndrewWave, norms.LeastSquares, norms.HuberT,
norms.TrimmedMean, norms.TukeyBiweight, norms.Hampel,
norms.RamsayE])
def norm(request):
return request.param()
@pytest.fixture(scope='module')
def perfect_fit_data(request):
from statsmodels.tools.tools import Bunch
rs = np.random.RandomState(1249328932)
exog = rs.standard_normal((1000, 1))
endog = exog + exog ** 2
exog = sm.add_constant(np.c_[exog, exog ** 2])
return Bunch(endog=endog, exog=exog, const=(3.2 * np.ones_like(endog)))
def test_perfect_fit(perfect_fit_data, norm):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
res = RLM(perfect_fit_data.endog, perfect_fit_data.exog, M=norm).fit()
assert_allclose(res.params, np.array([0, 1, 1]), atol=1e-8)
def test_perfect_const(perfect_fit_data, norm):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
res = RLM(perfect_fit_data.const, perfect_fit_data.exog, M=norm).fit()
assert_allclose(res.params, np.array([3.2, 0, 0]), atol=1e-8)
@pytest.mark.parametrize('conv', ('weights', 'coefs', 'sresid'))
def test_alt_criterion(conv):
data = load_stackloss()
data.exog = sm.add_constant(data.exog, prepend=False)
base = RLM(data.endog, data.exog, M=norms.HuberT()).fit()
alt = RLM(data.endog, data.exog, M=norms.HuberT()).fit(conv=conv)
assert_allclose(base.params, alt.params)
def test_bad_criterion():
data = load_stackloss()
data.exog = np.asarray(data.exog)
data.endog = np.asarray(data.endog)
data.exog = sm.add_constant(data.exog, prepend=False)
mod = RLM(data.endog, data.exog, M=norms.HuberT())
with pytest.raises(ValueError, match='Convergence argument unknown'):
mod.fit(conv='unknown')