964 lines
34 KiB
Python
964 lines
34 KiB
Python
"""
|
|
Multivariate Conditional and Unconditional Kernel Density Estimation
|
|
with Mixed Data Types
|
|
|
|
References
|
|
----------
|
|
[1] Racine, J., Li, Q. Nonparametric econometrics: theory and practice.
|
|
Princeton University Press. (2007)
|
|
[2] Racine, Jeff. "Nonparametric Econometrics: A Primer," Foundation
|
|
and Trends in Econometrics: Vol 3: No 1, pp1-88. (2008)
|
|
http://dx.doi.org/10.1561/0800000009
|
|
[3] Racine, J., Li, Q. "Nonparametric Estimation of Distributions
|
|
with Categorical and Continuous Data." Working Paper. (2000)
|
|
[4] Racine, J. Li, Q. "Kernel Estimation of Multivariate Conditional
|
|
Distributions Annals of Economics and Finance 5, 211-235 (2004)
|
|
[5] Liu, R., Yang, L. "Kernel estimation of multivariate
|
|
cumulative distribution function."
|
|
Journal of Nonparametric Statistics (2008)
|
|
[6] Li, R., Ju, G. "Nonparametric Estimation of Multivariate CDF
|
|
with Categorical and Continuous Data." Working Paper
|
|
[7] Li, Q., Racine, J. "Cross-validated local linear nonparametric
|
|
regression" Statistica Sinica 14(2004), pp. 485-512
|
|
[8] Racine, J.: "Consistent Significance Testing for Nonparametric
|
|
Regression" Journal of Business & Economics Statistics
|
|
[9] Racine, J., Hart, J., Li, Q., "Testing the Significance of
|
|
Categorical Predictor Variables in Nonparametric Regression
|
|
Models", 2006, Econometric Reviews 25, 523-544
|
|
|
|
"""
|
|
|
|
# TODO: make default behavior efficient=True above a certain n_obs
|
|
import copy
|
|
|
|
import numpy as np
|
|
from scipy import optimize
|
|
from scipy.stats.mstats import mquantiles
|
|
|
|
from ._kernel_base import GenericKDE, EstimatorSettings, gpke, \
|
|
LeaveOneOut, _get_type_pos, _adjust_shape, _compute_min_std_IQR, kernel_func
|
|
|
|
|
|
__all__ = ['KernelReg', 'KernelCensoredReg']
|
|
|
|
|
|
class KernelReg(GenericKDE):
|
|
"""
|
|
Nonparametric kernel regression class.
|
|
|
|
Calculates the conditional mean ``E[y|X]`` where ``y = g(X) + e``.
|
|
Note that the "local constant" type of regression provided here is also
|
|
known as Nadaraya-Watson kernel regression; "local linear" is an extension
|
|
of that which suffers less from bias issues at the edge of the support. Note
|
|
that specifying a custom kernel works only with "local linear" kernel
|
|
regression. For example, a custom ``tricube`` kernel yields LOESS regression.
|
|
|
|
Parameters
|
|
----------
|
|
endog : array_like
|
|
This is the dependent variable.
|
|
exog : array_like
|
|
The training data for the independent variable(s)
|
|
Each element in the list is a separate variable
|
|
var_type : str
|
|
The type of the variables, one character per variable:
|
|
|
|
- c: continuous
|
|
- u: unordered (discrete)
|
|
- o: ordered (discrete)
|
|
|
|
reg_type : {'lc', 'll'}, optional
|
|
Type of regression estimator. 'lc' means local constant and
|
|
'll' local Linear estimator. Default is 'll'
|
|
bw : str or array_like, optional
|
|
Either a user-specified bandwidth or the method for bandwidth
|
|
selection. If a string, valid values are 'cv_ls' (least-squares
|
|
cross-validation) and 'aic' (AIC Hurvich bandwidth estimation).
|
|
Default is 'cv_ls'. User specified bandwidth must have as many
|
|
entries as the number of variables.
|
|
ckertype : str, optional
|
|
The kernel used for the continuous variables.
|
|
okertype : str, optional
|
|
The kernel used for the ordered discrete variables.
|
|
ukertype : str, optional
|
|
The kernel used for the unordered discrete variables.
|
|
defaults : EstimatorSettings instance, optional
|
|
The default values for the efficient bandwidth estimation.
|
|
|
|
Attributes
|
|
----------
|
|
bw : array_like
|
|
The bandwidth parameters.
|
|
"""
|
|
def __init__(self, endog, exog, var_type, reg_type='ll', bw='cv_ls',
|
|
ckertype='gaussian', okertype='wangryzin',
|
|
ukertype='aitchisonaitken', defaults=None):
|
|
self.var_type = var_type
|
|
self.data_type = var_type
|
|
self.reg_type = reg_type
|
|
self.ckertype = ckertype
|
|
self.okertype = okertype
|
|
self.ukertype = ukertype
|
|
if not (self.ckertype in kernel_func and self.ukertype in kernel_func
|
|
and self.okertype in kernel_func):
|
|
raise ValueError('user specified kernel must be a supported '
|
|
'kernel from statsmodels.nonparametric.kernels.')
|
|
|
|
self.k_vars = len(self.var_type)
|
|
self.endog = _adjust_shape(endog, 1)
|
|
self.exog = _adjust_shape(exog, self.k_vars)
|
|
self.data = np.column_stack((self.endog, self.exog))
|
|
self.nobs = np.shape(self.exog)[0]
|
|
self.est = dict(lc=self._est_loc_constant, ll=self._est_loc_linear)
|
|
defaults = EstimatorSettings() if defaults is None else defaults
|
|
self._set_defaults(defaults)
|
|
if not isinstance(bw, str):
|
|
bw = np.asarray(bw)
|
|
if len(bw) != self.k_vars:
|
|
raise ValueError('bw must have the same dimension as the '
|
|
'number of variables.')
|
|
if not self.efficient:
|
|
self.bw = self._compute_reg_bw(bw)
|
|
else:
|
|
self.bw = self._compute_efficient(bw)
|
|
|
|
def _compute_reg_bw(self, bw):
|
|
if not isinstance(bw, str):
|
|
self._bw_method = "user-specified"
|
|
return np.asarray(bw)
|
|
else:
|
|
# The user specified a bandwidth selection method e.g. 'cv_ls'
|
|
self._bw_method = bw
|
|
# Workaround to avoid instance methods in __dict__
|
|
if bw == 'cv_ls':
|
|
res = self.cv_loo
|
|
else: # bw == 'aic'
|
|
res = self.aic_hurvich
|
|
X = np.std(self.exog, axis=0)
|
|
h0 = 1.06 * X * \
|
|
self.nobs ** (- 1. / (4 + np.size(self.exog, axis=1)))
|
|
|
|
func = self.est[self.reg_type]
|
|
bw_estimated = optimize.fmin(res, x0=h0, args=(func, ),
|
|
maxiter=1e3, maxfun=1e3, disp=0)
|
|
return bw_estimated
|
|
|
|
def _est_loc_linear(self, bw, endog, exog, data_predict):
|
|
"""
|
|
Local linear estimator of g(x) in the regression ``y = g(x) + e``.
|
|
|
|
Parameters
|
|
----------
|
|
bw : array_like
|
|
Vector of bandwidth value(s).
|
|
endog : 1D array_like
|
|
The dependent variable.
|
|
exog : 1D or 2D array_like
|
|
The independent variable(s).
|
|
data_predict : 1D array_like of length K, where K is the number of variables.
|
|
The point at which the density is estimated.
|
|
|
|
Returns
|
|
-------
|
|
D_x : array_like
|
|
The value of the conditional mean at `data_predict`.
|
|
|
|
Notes
|
|
-----
|
|
See p. 81 in [1] and p.38 in [2] for the formulas.
|
|
Unlike other methods, this one requires that `data_predict` be 1D.
|
|
"""
|
|
nobs, k_vars = exog.shape
|
|
ker = gpke(bw, data=exog, data_predict=data_predict,
|
|
var_type=self.var_type,
|
|
ckertype=self.ckertype,
|
|
ukertype=self.ukertype,
|
|
okertype=self.okertype,
|
|
tosum=False) / float(nobs)
|
|
# Create the matrix on p.492 in [7], after the multiplication w/ K_h,ij
|
|
# See also p. 38 in [2]
|
|
#ix_cont = np.arange(self.k_vars) # Use all vars instead of continuous only
|
|
# Note: because ix_cont was defined here such that it selected all
|
|
# columns, I removed the indexing with it from exog/data_predict.
|
|
|
|
# Convert ker to a 2-D array to make matrix operations below work
|
|
ker = ker[:, np.newaxis]
|
|
|
|
M12 = exog - data_predict
|
|
M22 = np.dot(M12.T, M12 * ker)
|
|
M12 = (M12 * ker).sum(axis=0)
|
|
M = np.empty((k_vars + 1, k_vars + 1))
|
|
M[0, 0] = ker.sum()
|
|
M[0, 1:] = M12
|
|
M[1:, 0] = M12
|
|
M[1:, 1:] = M22
|
|
|
|
ker_endog = ker * endog
|
|
V = np.empty((k_vars + 1, 1))
|
|
V[0, 0] = ker_endog.sum()
|
|
V[1:, 0] = ((exog - data_predict) * ker_endog).sum(axis=0)
|
|
|
|
mean_mfx = np.dot(np.linalg.pinv(M), V)
|
|
mean = mean_mfx[0]
|
|
mfx = mean_mfx[1:, :]
|
|
return mean, mfx
|
|
|
|
def _est_loc_constant(self, bw, endog, exog, data_predict):
|
|
"""
|
|
Local constant estimator of g(x) in the regression
|
|
y = g(x) + e
|
|
|
|
Parameters
|
|
----------
|
|
bw : array_like
|
|
Array of bandwidth value(s).
|
|
endog : 1D array_like
|
|
The dependent variable.
|
|
exog : 1D or 2D array_like
|
|
The independent variable(s).
|
|
data_predict : 1D or 2D array_like
|
|
The point(s) at which the density is estimated.
|
|
|
|
Returns
|
|
-------
|
|
G : ndarray
|
|
The value of the conditional mean at `data_predict`.
|
|
B_x : ndarray
|
|
The marginal effects.
|
|
"""
|
|
ker_x = gpke(bw, data=exog, data_predict=data_predict,
|
|
var_type=self.var_type,
|
|
ckertype=self.ckertype,
|
|
ukertype=self.ukertype,
|
|
okertype=self.okertype,
|
|
tosum=False)
|
|
ker_x = np.reshape(ker_x, np.shape(endog))
|
|
G_numer = (ker_x * endog).sum(axis=0)
|
|
G_denom = ker_x.sum(axis=0)
|
|
G = G_numer / G_denom
|
|
nobs = exog.shape[0]
|
|
f_x = G_denom / float(nobs)
|
|
ker_xc = gpke(bw, data=exog, data_predict=data_predict,
|
|
var_type=self.var_type,
|
|
ckertype='d_gaussian',
|
|
#okertype='wangryzin_reg',
|
|
tosum=False)
|
|
|
|
ker_xc = ker_xc[:, np.newaxis]
|
|
d_mx = -(endog * ker_xc).sum(axis=0) / float(nobs) #* np.prod(bw[:, ix_cont]))
|
|
d_fx = -ker_xc.sum(axis=0) / float(nobs) #* np.prod(bw[:, ix_cont]))
|
|
B_x = d_mx / f_x - G * d_fx / f_x
|
|
B_x = (G_numer * d_fx - G_denom * d_mx) / (G_denom**2)
|
|
#B_x = (f_x * d_mx - m_x * d_fx) / (f_x ** 2)
|
|
return G, B_x
|
|
|
|
def aic_hurvich(self, bw, func=None):
|
|
"""
|
|
Computes the AIC Hurvich criteria for the estimation of the bandwidth.
|
|
|
|
Parameters
|
|
----------
|
|
bw : str or array_like
|
|
See the ``bw`` parameter of `KernelReg` for details.
|
|
|
|
Returns
|
|
-------
|
|
aic : ndarray
|
|
The AIC Hurvich criteria, one element for each variable.
|
|
func : None
|
|
Unused here, needed in signature because it's used in `cv_loo`.
|
|
|
|
References
|
|
----------
|
|
See ch.2 in [1] and p.35 in [2].
|
|
"""
|
|
H = np.empty((self.nobs, self.nobs))
|
|
for j in range(self.nobs):
|
|
H[:, j] = gpke(bw, data=self.exog, data_predict=self.exog[j,:],
|
|
ckertype=self.ckertype, ukertype=self.ukertype,
|
|
okertype=self.okertype, var_type=self.var_type,
|
|
tosum=False)
|
|
|
|
denom = H.sum(axis=1)
|
|
H = H / denom
|
|
gx = KernelReg(endog=self.endog, exog=self.exog, var_type=self.var_type,
|
|
reg_type=self.reg_type, bw=bw,
|
|
defaults=EstimatorSettings(efficient=False)).fit()[0]
|
|
gx = np.reshape(gx, (self.nobs, 1))
|
|
sigma = ((self.endog - gx)**2).sum(axis=0) / float(self.nobs)
|
|
|
|
frac = (1 + np.trace(H) / float(self.nobs)) / \
|
|
(1 - (np.trace(H) + 2) / float(self.nobs))
|
|
#siga = np.dot(self.endog.T, (I - H).T)
|
|
#sigb = np.dot((I - H), self.endog)
|
|
#sigma = np.dot(siga, sigb) / float(self.nobs)
|
|
aic = np.log(sigma) + frac
|
|
return aic
|
|
|
|
def cv_loo(self, bw, func):
|
|
r"""
|
|
The cross-validation function with leave-one-out estimator.
|
|
|
|
Parameters
|
|
----------
|
|
bw : array_like
|
|
Vector of bandwidth values.
|
|
func : callable function
|
|
Returns the estimator of g(x). Can be either ``_est_loc_constant``
|
|
(local constant) or ``_est_loc_linear`` (local_linear).
|
|
|
|
Returns
|
|
-------
|
|
L : float
|
|
The value of the CV function.
|
|
|
|
Notes
|
|
-----
|
|
Calculates the cross-validation least-squares function. This function
|
|
is minimized by compute_bw to calculate the optimal value of `bw`.
|
|
|
|
For details see p.35 in [2]
|
|
|
|
.. math:: CV(h)=n^{-1}\sum_{i=1}^{n}(Y_{i}-g_{-i}(X_{i}))^{2}
|
|
|
|
where :math:`g_{-i}(X_{i})` is the leave-one-out estimator of g(X)
|
|
and :math:`h` is the vector of bandwidths
|
|
"""
|
|
LOO_X = LeaveOneOut(self.exog)
|
|
LOO_Y = LeaveOneOut(self.endog).__iter__()
|
|
L = 0
|
|
for ii, X_not_i in enumerate(LOO_X):
|
|
Y = next(LOO_Y)
|
|
G = func(bw, endog=Y, exog=-X_not_i,
|
|
data_predict=-self.exog[ii, :])[0]
|
|
L += (self.endog[ii] - G) ** 2
|
|
|
|
# Note: There might be a way to vectorize this. See p.72 in [1]
|
|
return L / self.nobs
|
|
|
|
def r_squared(self):
|
|
r"""
|
|
Returns the R-Squared for the nonparametric regression.
|
|
|
|
Notes
|
|
-----
|
|
For more details see p.45 in [2]
|
|
The R-Squared is calculated by:
|
|
|
|
.. math:: R^{2}=\frac{\left[\sum_{i=1}^{n}
|
|
(Y_{i}-\bar{y})(\hat{Y_{i}}-\bar{y}\right]^{2}}{\sum_{i=1}^{n}
|
|
(Y_{i}-\bar{y})^{2}\sum_{i=1}^{n}(\hat{Y_{i}}-\bar{y})^{2}},
|
|
|
|
where :math:`\hat{Y_{i}}` is the mean calculated in `fit` at the exog
|
|
points.
|
|
"""
|
|
Y = np.squeeze(self.endog)
|
|
Yhat = self.fit()[0]
|
|
Y_bar = np.mean(Yhat)
|
|
R2_numer = (((Y - Y_bar) * (Yhat - Y_bar)).sum())**2
|
|
R2_denom = ((Y - Y_bar)**2).sum(axis=0) * \
|
|
((Yhat - Y_bar)**2).sum(axis=0)
|
|
return R2_numer / R2_denom
|
|
|
|
def fit(self, data_predict=None):
|
|
"""
|
|
Returns the mean and marginal effects at the `data_predict` points.
|
|
|
|
Parameters
|
|
----------
|
|
data_predict : array_like, optional
|
|
Points at which to return the mean and marginal effects. If not
|
|
given, ``data_predict == exog``.
|
|
|
|
Returns
|
|
-------
|
|
mean : ndarray
|
|
The regression result for the mean (i.e. the actual curve).
|
|
mfx : ndarray
|
|
The marginal effects, i.e. the partial derivatives of the mean.
|
|
"""
|
|
func = self.est[self.reg_type]
|
|
if data_predict is None:
|
|
data_predict = self.exog
|
|
else:
|
|
data_predict = _adjust_shape(data_predict, self.k_vars)
|
|
|
|
N_data_predict = np.shape(data_predict)[0]
|
|
mean = np.empty((N_data_predict,))
|
|
mfx = np.empty((N_data_predict, self.k_vars))
|
|
for i in range(N_data_predict):
|
|
mean_mfx = func(self.bw, self.endog, self.exog,
|
|
data_predict=data_predict[i, :])
|
|
mean[i] = np.squeeze(mean_mfx[0])
|
|
mfx_c = np.squeeze(mean_mfx[1])
|
|
mfx[i, :] = mfx_c
|
|
|
|
return mean, mfx
|
|
|
|
def sig_test(self, var_pos, nboot=50, nested_res=25, pivot=False):
|
|
"""
|
|
Significance test for the variables in the regression.
|
|
|
|
Parameters
|
|
----------
|
|
var_pos : sequence
|
|
The position of the variable in exog to be tested.
|
|
|
|
Returns
|
|
-------
|
|
sig : str
|
|
The level of significance:
|
|
|
|
- `*` : at 90% confidence level
|
|
- `**` : at 95% confidence level
|
|
- `***` : at 99* confidence level
|
|
- "Not Significant" : if not significant
|
|
"""
|
|
var_pos = np.asarray(var_pos)
|
|
ix_cont, ix_ord, ix_unord = _get_type_pos(self.var_type)
|
|
if np.any(ix_cont[var_pos]):
|
|
if np.any(ix_ord[var_pos]) or np.any(ix_unord[var_pos]):
|
|
raise ValueError("Discrete variable in hypothesis. Must be continuous")
|
|
|
|
Sig = TestRegCoefC(self, var_pos, nboot, nested_res, pivot)
|
|
else:
|
|
Sig = TestRegCoefD(self, var_pos, nboot)
|
|
|
|
return Sig.sig
|
|
|
|
def __repr__(self):
|
|
"""Provide something sane to print."""
|
|
rpr = "KernelReg instance\n"
|
|
rpr += "Number of variables: k_vars = " + str(self.k_vars) + "\n"
|
|
rpr += "Number of samples: N = " + str(self.nobs) + "\n"
|
|
rpr += "Variable types: " + self.var_type + "\n"
|
|
rpr += "BW selection method: " + self._bw_method + "\n"
|
|
rpr += "Estimator type: " + self.reg_type + "\n"
|
|
return rpr
|
|
|
|
def _get_class_vars_type(self):
|
|
"""Helper method to be able to pass needed vars to _compute_subset."""
|
|
class_type = 'KernelReg'
|
|
class_vars = (self.var_type, self.k_vars, self.reg_type)
|
|
return class_type, class_vars
|
|
|
|
def _compute_dispersion(self, data):
|
|
"""
|
|
Computes the measure of dispersion.
|
|
|
|
The minimum of the standard deviation and interquartile range / 1.349
|
|
|
|
References
|
|
----------
|
|
See the user guide for the np package in R.
|
|
In the notes on bwscaling option in npreg, npudens, npcdens there is
|
|
a discussion on the measure of dispersion
|
|
"""
|
|
data = data[:, 1:]
|
|
return _compute_min_std_IQR(data)
|
|
|
|
|
|
class KernelCensoredReg(KernelReg):
|
|
"""
|
|
Nonparametric censored regression.
|
|
|
|
Calculates the conditional mean ``E[y|X]`` where ``y = g(X) + e``,
|
|
where y is left-censored. Left censored variable Y is defined as
|
|
``Y = min {Y', L}`` where ``L`` is the value at which ``Y`` is censored
|
|
and ``Y'`` is the true value of the variable.
|
|
|
|
Parameters
|
|
----------
|
|
endog : list with one element which is array_like
|
|
This is the dependent variable.
|
|
exog : list
|
|
The training data for the independent variable(s)
|
|
Each element in the list is a separate variable
|
|
dep_type : str
|
|
The type of the dependent variable(s)
|
|
c: Continuous
|
|
u: Unordered (Discrete)
|
|
o: Ordered (Discrete)
|
|
reg_type : str
|
|
Type of regression estimator
|
|
lc: Local Constant Estimator
|
|
ll: Local Linear Estimator
|
|
bw : array_like
|
|
Either a user-specified bandwidth or
|
|
the method for bandwidth selection.
|
|
cv_ls: cross-validation least squares
|
|
aic: AIC Hurvich Estimator
|
|
ckertype : str, optional
|
|
The kernel used for the continuous variables.
|
|
okertype : str, optional
|
|
The kernel used for the ordered discrete variables.
|
|
ukertype : str, optional
|
|
The kernel used for the unordered discrete variables.
|
|
censor_val : float
|
|
Value at which the dependent variable is censored
|
|
defaults : EstimatorSettings instance, optional
|
|
The default values for the efficient bandwidth estimation
|
|
|
|
Attributes
|
|
----------
|
|
bw : array_like
|
|
The bandwidth parameters
|
|
"""
|
|
def __init__(self, endog, exog, var_type, reg_type, bw='cv_ls',
|
|
ckertype='gaussian',
|
|
ukertype='aitchison_aitken_reg',
|
|
okertype='wangryzin_reg',
|
|
censor_val=0, defaults=None):
|
|
self.var_type = var_type
|
|
self.data_type = var_type
|
|
self.reg_type = reg_type
|
|
self.ckertype = ckertype
|
|
self.okertype = okertype
|
|
self.ukertype = ukertype
|
|
if not (self.ckertype in kernel_func and self.ukertype in kernel_func
|
|
and self.okertype in kernel_func):
|
|
raise ValueError('user specified kernel must be a supported '
|
|
'kernel from statsmodels.nonparametric.kernels.')
|
|
|
|
self.k_vars = len(self.var_type)
|
|
self.endog = _adjust_shape(endog, 1)
|
|
self.exog = _adjust_shape(exog, self.k_vars)
|
|
self.data = np.column_stack((self.endog, self.exog))
|
|
self.nobs = np.shape(self.exog)[0]
|
|
self.est = dict(lc=self._est_loc_constant, ll=self._est_loc_linear)
|
|
defaults = EstimatorSettings() if defaults is None else defaults
|
|
self._set_defaults(defaults)
|
|
self.censor_val = censor_val
|
|
if self.censor_val is not None:
|
|
self.censored(censor_val)
|
|
else:
|
|
self.W_in = np.ones((self.nobs, 1))
|
|
|
|
if not self.efficient:
|
|
self.bw = self._compute_reg_bw(bw)
|
|
else:
|
|
self.bw = self._compute_efficient(bw)
|
|
|
|
def censored(self, censor_val):
|
|
# see pp. 341-344 in [1]
|
|
self.d = (self.endog != censor_val) * 1.
|
|
ix = np.argsort(np.squeeze(self.endog))
|
|
self.sortix = ix
|
|
self.sortix_rev = np.zeros(ix.shape, int)
|
|
self.sortix_rev[ix] = np.arange(len(ix))
|
|
self.endog = np.squeeze(self.endog[ix])
|
|
self.endog = _adjust_shape(self.endog, 1)
|
|
self.exog = np.squeeze(self.exog[ix])
|
|
self.d = np.squeeze(self.d[ix])
|
|
self.W_in = np.empty((self.nobs, 1))
|
|
for i in range(1, self.nobs + 1):
|
|
P=1
|
|
for j in range(1, i):
|
|
P *= ((self.nobs - j)/(float(self.nobs)-j+1))**self.d[j-1]
|
|
self.W_in[i-1,0] = P * self.d[i-1] / (float(self.nobs) - i + 1 )
|
|
|
|
def __repr__(self):
|
|
"""Provide something sane to print."""
|
|
rpr = "KernelCensoredReg instance\n"
|
|
rpr += "Number of variables: k_vars = " + str(self.k_vars) + "\n"
|
|
rpr += "Number of samples: nobs = " + str(self.nobs) + "\n"
|
|
rpr += "Variable types: " + self.var_type + "\n"
|
|
rpr += "BW selection method: " + self._bw_method + "\n"
|
|
rpr += "Estimator type: " + self.reg_type + "\n"
|
|
return rpr
|
|
|
|
def _est_loc_linear(self, bw, endog, exog, data_predict, W):
|
|
"""
|
|
Local linear estimator of g(x) in the regression ``y = g(x) + e``.
|
|
|
|
Parameters
|
|
----------
|
|
bw : array_like
|
|
Vector of bandwidth value(s)
|
|
endog : 1D array_like
|
|
The dependent variable
|
|
exog : 1D or 2D array_like
|
|
The independent variable(s)
|
|
data_predict : 1D array_like of length K, where K is
|
|
the number of variables. The point at which
|
|
the density is estimated
|
|
|
|
Returns
|
|
-------
|
|
D_x : array_like
|
|
The value of the conditional mean at data_predict
|
|
|
|
Notes
|
|
-----
|
|
See p. 81 in [1] and p.38 in [2] for the formulas
|
|
Unlike other methods, this one requires that data_predict be 1D
|
|
"""
|
|
nobs, k_vars = exog.shape
|
|
ker = gpke(bw, data=exog, data_predict=data_predict,
|
|
var_type=self.var_type,
|
|
ckertype=self.ckertype,
|
|
ukertype=self.ukertype,
|
|
okertype=self.okertype, tosum=False)
|
|
# Create the matrix on p.492 in [7], after the multiplication w/ K_h,ij
|
|
# See also p. 38 in [2]
|
|
|
|
# Convert ker to a 2-D array to make matrix operations below work
|
|
ker = W * ker[:, np.newaxis]
|
|
|
|
M12 = exog - data_predict
|
|
M22 = np.dot(M12.T, M12 * ker)
|
|
M12 = (M12 * ker).sum(axis=0)
|
|
M = np.empty((k_vars + 1, k_vars + 1))
|
|
M[0, 0] = ker.sum()
|
|
M[0, 1:] = M12
|
|
M[1:, 0] = M12
|
|
M[1:, 1:] = M22
|
|
|
|
ker_endog = ker * endog
|
|
V = np.empty((k_vars + 1, 1))
|
|
V[0, 0] = ker_endog.sum()
|
|
V[1:, 0] = ((exog - data_predict) * ker_endog).sum(axis=0)
|
|
|
|
mean_mfx = np.dot(np.linalg.pinv(M), V)
|
|
mean = mean_mfx[0]
|
|
mfx = mean_mfx[1:, :]
|
|
return mean, mfx
|
|
|
|
|
|
def cv_loo(self, bw, func):
|
|
r"""
|
|
The cross-validation function with leave-one-out
|
|
estimator
|
|
|
|
Parameters
|
|
----------
|
|
bw : array_like
|
|
Vector of bandwidth values
|
|
func : callable function
|
|
Returns the estimator of g(x).
|
|
Can be either ``_est_loc_constant`` (local constant) or
|
|
``_est_loc_linear`` (local_linear).
|
|
|
|
Returns
|
|
-------
|
|
L : float
|
|
The value of the CV function
|
|
|
|
Notes
|
|
-----
|
|
Calculates the cross-validation least-squares
|
|
function. This function is minimized by compute_bw
|
|
to calculate the optimal value of bw
|
|
|
|
For details see p.35 in [2]
|
|
|
|
.. math:: CV(h)=n^{-1}\sum_{i=1}^{n}(Y_{i}-g_{-i}(X_{i}))^{2}
|
|
|
|
where :math:`g_{-i}(X_{i})` is the leave-one-out estimator of g(X)
|
|
and :math:`h` is the vector of bandwidths
|
|
"""
|
|
LOO_X = LeaveOneOut(self.exog)
|
|
LOO_Y = LeaveOneOut(self.endog).__iter__()
|
|
LOO_W = LeaveOneOut(self.W_in).__iter__()
|
|
L = 0
|
|
for ii, X_not_i in enumerate(LOO_X):
|
|
Y = next(LOO_Y)
|
|
w = next(LOO_W)
|
|
G = func(bw, endog=Y, exog=-X_not_i,
|
|
data_predict=-self.exog[ii, :], W=w)[0]
|
|
L += (self.endog[ii] - G) ** 2
|
|
|
|
# Note: There might be a way to vectorize this. See p.72 in [1]
|
|
return L / self.nobs
|
|
|
|
def fit(self, data_predict=None):
|
|
"""
|
|
Returns the marginal effects at the data_predict points.
|
|
"""
|
|
func = self.est[self.reg_type]
|
|
if data_predict is None:
|
|
data_predict = self.exog
|
|
else:
|
|
data_predict = _adjust_shape(data_predict, self.k_vars)
|
|
|
|
N_data_predict = np.shape(data_predict)[0]
|
|
mean = np.empty((N_data_predict,))
|
|
mfx = np.empty((N_data_predict, self.k_vars))
|
|
for i in range(N_data_predict):
|
|
mean_mfx = func(self.bw, self.endog, self.exog,
|
|
data_predict=data_predict[i, :],
|
|
W=self.W_in)
|
|
mean[i] = np.squeeze(mean_mfx[0])
|
|
mfx_c = np.squeeze(mean_mfx[1])
|
|
mfx[i, :] = mfx_c
|
|
|
|
return mean, mfx
|
|
|
|
|
|
class TestRegCoefC:
|
|
"""
|
|
Significance test for continuous variables in a nonparametric regression.
|
|
|
|
The null hypothesis is ``dE(Y|X)/dX_not_i = 0``, the alternative hypothesis
|
|
is ``dE(Y|X)/dX_not_i != 0``.
|
|
|
|
Parameters
|
|
----------
|
|
model : KernelReg instance
|
|
This is the nonparametric regression model whose elements
|
|
are tested for significance.
|
|
test_vars : tuple, list of integers, array_like
|
|
index of position of the continuous variables to be tested
|
|
for significance. E.g. (1,3,5) jointly tests variables at
|
|
position 1,3 and 5 for significance.
|
|
nboot : int
|
|
Number of bootstrap samples used to determine the distribution
|
|
of the test statistic in a finite sample. Default is 400
|
|
nested_res : int
|
|
Number of nested resamples used to calculate lambda.
|
|
Must enable the pivot option
|
|
pivot : bool
|
|
Pivot the test statistic by dividing by its standard error
|
|
Significantly increases computational time. But pivot statistics
|
|
have more desirable properties
|
|
(See references)
|
|
|
|
Attributes
|
|
----------
|
|
sig : str
|
|
The significance level of the variable(s) tested
|
|
"Not Significant": Not significant at the 90% confidence level
|
|
Fails to reject the null
|
|
"*": Significant at the 90% confidence level
|
|
"**": Significant at the 95% confidence level
|
|
"***": Significant at the 99% confidence level
|
|
|
|
Notes
|
|
-----
|
|
This class allows testing of joint hypothesis as long as all variables
|
|
are continuous.
|
|
|
|
References
|
|
----------
|
|
Racine, J.: "Consistent Significance Testing for Nonparametric Regression"
|
|
Journal of Business & Economics Statistics.
|
|
|
|
Chapter 12 in [1].
|
|
"""
|
|
# Significance of continuous vars in nonparametric regression
|
|
# Racine: Consistent Significance Testing for Nonparametric Regression
|
|
# Journal of Business & Economics Statistics
|
|
def __init__(self, model, test_vars, nboot=400, nested_res=400,
|
|
pivot=False):
|
|
self.nboot = nboot
|
|
self.nres = nested_res
|
|
self.test_vars = test_vars
|
|
self.model = model
|
|
self.bw = model.bw
|
|
self.var_type = model.var_type
|
|
self.k_vars = len(self.var_type)
|
|
self.endog = model.endog
|
|
self.exog = model.exog
|
|
self.gx = model.est[model.reg_type]
|
|
self.test_vars = test_vars
|
|
self.pivot = pivot
|
|
self.run()
|
|
|
|
def run(self):
|
|
self.test_stat = self._compute_test_stat(self.endog, self.exog)
|
|
self.sig = self._compute_sig()
|
|
|
|
def _compute_test_stat(self, Y, X):
|
|
"""
|
|
Computes the test statistic. See p.371 in [8].
|
|
"""
|
|
lam = self._compute_lambda(Y, X)
|
|
t = lam
|
|
if self.pivot:
|
|
se_lam = self._compute_se_lambda(Y, X)
|
|
t = lam / float(se_lam)
|
|
|
|
return t
|
|
|
|
def _compute_lambda(self, Y, X):
|
|
"""Computes only lambda -- the main part of the test statistic"""
|
|
n = np.shape(X)[0]
|
|
Y = _adjust_shape(Y, 1)
|
|
X = _adjust_shape(X, self.k_vars)
|
|
b = KernelReg(Y, X, self.var_type, self.model.reg_type, self.bw,
|
|
defaults = EstimatorSettings(efficient=False)).fit()[1]
|
|
|
|
b = b[:, self.test_vars]
|
|
b = np.reshape(b, (n, len(self.test_vars)))
|
|
#fct = np.std(b) # Pivot the statistic by dividing by SE
|
|
fct = 1. # Do not Pivot -- Bootstrapping works better if Pivot
|
|
lam = ((b / fct) ** 2).sum() / float(n)
|
|
return lam
|
|
|
|
def _compute_se_lambda(self, Y, X):
|
|
"""
|
|
Calculates the SE of lambda by nested resampling
|
|
Used to pivot the statistic.
|
|
Bootstrapping works better with estimating pivotal statistics
|
|
but slows down computation significantly.
|
|
"""
|
|
n = np.shape(Y)[0]
|
|
lam = np.empty(shape=(self.nres,))
|
|
for i in range(self.nres):
|
|
ind = np.random.randint(0, n, size=(n, 1))
|
|
Y1 = Y[ind, 0]
|
|
X1 = X[ind, :]
|
|
lam[i] = self._compute_lambda(Y1, X1)
|
|
|
|
se_lambda = np.std(lam)
|
|
return se_lambda
|
|
|
|
def _compute_sig(self):
|
|
"""
|
|
Computes the significance value for the variable(s) tested.
|
|
|
|
The empirical distribution of the test statistic is obtained through
|
|
bootstrapping the sample. The null hypothesis is rejected if the test
|
|
statistic is larger than the 90, 95, 99 percentiles.
|
|
"""
|
|
t_dist = np.empty(shape=(self.nboot, ))
|
|
Y = self.endog
|
|
X = copy.deepcopy(self.exog)
|
|
n = np.shape(Y)[0]
|
|
|
|
X[:, self.test_vars] = np.mean(X[:, self.test_vars], axis=0)
|
|
# Calculate the restricted mean. See p. 372 in [8]
|
|
M = KernelReg(Y, X, self.var_type, self.model.reg_type, self.bw,
|
|
defaults=EstimatorSettings(efficient=False)).fit()[0]
|
|
M = np.reshape(M, (n, 1))
|
|
e = Y - M
|
|
e = e - np.mean(e) # recenter residuals
|
|
for i in range(self.nboot):
|
|
ind = np.random.randint(0, n, size=(n, 1))
|
|
e_boot = e[ind, 0]
|
|
Y_boot = M + e_boot
|
|
t_dist[i] = self._compute_test_stat(Y_boot, self.exog)
|
|
|
|
self.t_dist = t_dist
|
|
sig = "Not Significant"
|
|
if self.test_stat > mquantiles(t_dist, 0.9):
|
|
sig = "*"
|
|
if self.test_stat > mquantiles(t_dist, 0.95):
|
|
sig = "**"
|
|
if self.test_stat > mquantiles(t_dist, 0.99):
|
|
sig = "***"
|
|
|
|
return sig
|
|
|
|
|
|
class TestRegCoefD(TestRegCoefC):
|
|
"""
|
|
Significance test for the categorical variables in a nonparametric
|
|
regression.
|
|
|
|
Parameters
|
|
----------
|
|
model : Instance of KernelReg class
|
|
This is the nonparametric regression model whose elements
|
|
are tested for significance.
|
|
test_vars : tuple, list of one element
|
|
index of position of the discrete variable to be tested
|
|
for significance. E.g. (3) tests variable at
|
|
position 3 for significance.
|
|
nboot : int
|
|
Number of bootstrap samples used to determine the distribution
|
|
of the test statistic in a finite sample. Default is 400
|
|
|
|
Attributes
|
|
----------
|
|
sig : str
|
|
The significance level of the variable(s) tested
|
|
"Not Significant": Not significant at the 90% confidence level
|
|
Fails to reject the null
|
|
"*": Significant at the 90% confidence level
|
|
"**": Significant at the 95% confidence level
|
|
"***": Significant at the 99% confidence level
|
|
|
|
Notes
|
|
-----
|
|
This class currently does not allow joint hypothesis.
|
|
Only one variable can be tested at a time
|
|
|
|
References
|
|
----------
|
|
See [9] and chapter 12 in [1].
|
|
"""
|
|
|
|
def _compute_test_stat(self, Y, X):
|
|
"""Computes the test statistic"""
|
|
|
|
dom_x = np.sort(np.unique(self.exog[:, self.test_vars]))
|
|
|
|
n = np.shape(X)[0]
|
|
model = KernelReg(Y, X, self.var_type, self.model.reg_type, self.bw,
|
|
defaults = EstimatorSettings(efficient=False))
|
|
X1 = copy.deepcopy(X)
|
|
X1[:, self.test_vars] = 0
|
|
|
|
m0 = model.fit(data_predict=X1)[0]
|
|
m0 = np.reshape(m0, (n, 1))
|
|
zvec = np.zeros((n, 1)) # noqa:E741
|
|
for i in dom_x[1:] :
|
|
X1[:, self.test_vars] = i
|
|
m1 = model.fit(data_predict=X1)[0]
|
|
m1 = np.reshape(m1, (n, 1))
|
|
zvec += (m1 - m0) ** 2 # noqa:E741
|
|
|
|
avg = zvec.sum(axis=0) / float(n)
|
|
return avg
|
|
|
|
def _compute_sig(self):
|
|
"""Calculates the significance level of the variable tested"""
|
|
|
|
m = self._est_cond_mean()
|
|
Y = self.endog
|
|
X = self.exog
|
|
n = np.shape(X)[0]
|
|
u = Y - m
|
|
u = u - np.mean(u) # center
|
|
fct1 = (1 - 5**0.5) / 2.
|
|
fct2 = (1 + 5**0.5) / 2.
|
|
u1 = fct1 * u
|
|
u2 = fct2 * u
|
|
r = fct2 / (5 ** 0.5)
|
|
I_dist = np.empty((self.nboot,1))
|
|
for j in range(self.nboot):
|
|
u_boot = copy.deepcopy(u2)
|
|
|
|
prob = np.random.uniform(0,1, size = (n,1))
|
|
ind = prob < r
|
|
u_boot[ind] = u1[ind]
|
|
Y_boot = m + u_boot
|
|
I_dist[j] = self._compute_test_stat(Y_boot, X)
|
|
|
|
sig = "Not Significant"
|
|
if self.test_stat > mquantiles(I_dist, 0.9):
|
|
sig = "*"
|
|
if self.test_stat > mquantiles(I_dist, 0.95):
|
|
sig = "**"
|
|
if self.test_stat > mquantiles(I_dist, 0.99):
|
|
sig = "***"
|
|
|
|
return sig
|
|
|
|
def _est_cond_mean(self):
|
|
"""
|
|
Calculates the expected conditional mean
|
|
m(X, Z=l) for all possible l
|
|
"""
|
|
self.dom_x = np.sort(np.unique(self.exog[:, self.test_vars]))
|
|
X = copy.deepcopy(self.exog)
|
|
m=0
|
|
for i in self.dom_x:
|
|
X[:, self.test_vars] = i
|
|
m += self.model.fit(data_predict = X)[0]
|
|
|
|
m = m / float(len(self.dom_x))
|
|
m = np.reshape(m, (np.shape(self.exog)[0], 1))
|
|
return m
|