2024-10-02 22:15:59 +04:00

198 lines
9.4 KiB
Python

import numpy as np
import pandas as pd
import pytest
from numpy.testing import assert_almost_equal, assert_raises, assert_allclose
from statsmodels.multivariate.manova import MANOVA
from statsmodels.multivariate.multivariate_ols import MultivariateTestResults
from statsmodels.tools import add_constant
# Example data
# https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/
# viewer.htm#statug_introreg_sect012.htm
X = pd.DataFrame([['Minas Graes', 2.068, 2.070, 1.580],
['Minas Graes', 2.068, 2.074, 1.602],
['Minas Graes', 2.090, 2.090, 1.613],
['Minas Graes', 2.097, 2.093, 1.613],
['Minas Graes', 2.117, 2.125, 1.663],
['Minas Graes', 2.140, 2.146, 1.681],
['Matto Grosso', 2.045, 2.054, 1.580],
['Matto Grosso', 2.076, 2.088, 1.602],
['Matto Grosso', 2.090, 2.093, 1.643],
['Matto Grosso', 2.111, 2.114, 1.643],
['Santa Cruz', 2.093, 2.098, 1.653],
['Santa Cruz', 2.100, 2.106, 1.623],
['Santa Cruz', 2.104, 2.101, 1.653]],
columns=['Loc', 'Basal', 'Occ', 'Max'])
def test_manova_sas_example():
# Results should be the same as figure 4.5 of
# https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/
# viewer.htm#statug_introreg_sect012.htm
mod = MANOVA.from_formula('Basal + Occ + Max ~ Loc', data=X)
r = mod.mv_test()
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Value'],
0.60143661, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Value'],
0.44702843, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace", 'Value'],
0.58210348, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Value'],
0.35530890, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'F Value'],
0.77, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'F Value'],
0.86, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace", 'F Value'],
0.75, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'F Value'],
1.07, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Num DF'],
6, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Num DF'],
6, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace", 'Num DF'],
6, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Num DF'],
3, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Den DF'],
16, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Den DF'],
18, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace", 'Den DF'],
9.0909, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Den DF'],
9, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Pr > F'],
0.6032, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Pr > F'],
0.5397, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace", 'Pr > F'],
0.6272, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Pr > F'],
0.4109, decimal=4)
def test_manova_no_formula():
# Same as previous test only skipping formula interface
exog = add_constant(pd.get_dummies(X[['Loc']], drop_first=True,
dtype=float))
endog = X[['Basal', 'Occ', 'Max']]
mod = MANOVA(endog, exog)
intercept = np.zeros((1, 3))
intercept[0, 0] = 1
loc = np.zeros((2, 3))
loc[0, 1] = loc[1, 2] = 1
hypotheses = [('Intercept', intercept), ('Loc', loc)]
r = mod.mv_test(hypotheses)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Value'],
0.60143661, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Value'],
0.44702843, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace",
'Value'],
0.58210348, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Value'],
0.35530890, decimal=8)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'F Value'],
0.77, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'F Value'],
0.86, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace",
'F Value'],
0.75, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'F Value'],
1.07, decimal=2)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Num DF'],
6, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Num DF'],
6, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace",
'Num DF'],
6, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Num DF'],
3, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Den DF'],
16, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Den DF'],
18, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace",
'Den DF'],
9.0909, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Den DF'],
9, decimal=3)
assert_almost_equal(r['Loc']['stat'].loc["Wilks' lambda", 'Pr > F'],
0.6032, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Pillai's trace", 'Pr > F'],
0.5397, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Hotelling-Lawley trace",
'Pr > F'],
0.6272, decimal=4)
assert_almost_equal(r['Loc']['stat'].loc["Roy's greatest root", 'Pr > F'],
0.4109, decimal=4)
@pytest.mark.smoke
def test_manova_no_formula_no_hypothesis():
# Same as previous test only skipping formula interface
exog = add_constant(pd.get_dummies(X[['Loc']], drop_first=True,
dtype=float))
endog = X[['Basal', 'Occ', 'Max']]
mod = MANOVA(endog, exog)
r = mod.mv_test()
assert isinstance(r, MultivariateTestResults)
def test_manova_test_input_validation():
mod = MANOVA.from_formula('Basal + Occ + Max ~ Loc', data=X)
hypothesis = [('test', np.array([[1, 1, 1]]), None)]
mod.mv_test(hypothesis)
hypothesis = [('test', np.array([[1, 1]]), None)]
assert_raises(ValueError, mod.mv_test, hypothesis)
"""
assert_raises_regex(ValueError,
('Contrast matrix L should have the same number of '
'columns as exog! 2 != 3'),
mod.mv_test, hypothesis)
"""
hypothesis = [('test', np.array([[1, 1, 1]]), np.array([[1], [1], [1]]))]
mod.mv_test(hypothesis)
hypothesis = [('test', np.array([[1, 1, 1]]), np.array([[1], [1]]))]
assert_raises(ValueError, mod.mv_test, hypothesis)
"""
assert_raises_regex(ValueError,
('Transform matrix M should have the same number of '
'rows as the number of columns of endog! 2 != 3'),
mod.mv_test, hypothesis)
"""
def test_endog_1D_array():
assert_raises(ValueError, MANOVA.from_formula, 'Basal ~ Loc', X)
def test_manova_demeaned():
# see last example in #8713
# If a term has no effect, all eigenvalues below threshold, then computaion
# raised numpy exception with empty arrays.
# currently we have an option to skip the intercept test, but don't handle
# empty arrays directly
ng = 5
loc = ["Basal", "Occ", "Max"] * ng
y1 = (np.random.randn(ng, 3) + [0, 0.5, 1]).ravel()
y2 = (np.random.randn(ng, 3) + [0.25, 0.75, 1]).ravel()
y3 = (np.random.randn(ng, 3) + [0.3, 0.6, 1]).ravel()
dta = pd.DataFrame(dict(Loc=loc, Basal=y1, Occ=y2, Max=y3))
mod = MANOVA.from_formula('Basal + Occ + Max ~ C(Loc, Helmert)', data=dta)
res1 = mod.mv_test()
# subtract sample means to have insignificant intercept
means = dta[["Basal", "Occ", "Max"]].mean()
dta[["Basal", "Occ", "Max"]] = dta[["Basal", "Occ", "Max"]] - means
mod = MANOVA.from_formula('Basal + Occ + Max ~ C(Loc, Helmert)', data=dta)
res2 = mod.mv_test(skip_intercept_test=True)
stat1 = res1.results["C(Loc, Helmert)"]["stat"].to_numpy(float)
stat2 = res2.results["C(Loc, Helmert)"]["stat"].to_numpy(float)
assert_allclose(stat1, stat2, rtol=1e-10)