211 lines
6.4 KiB
Python
211 lines
6.4 KiB
Python
import warnings
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pytest
|
|
from numpy.testing import assert_equal
|
|
|
|
from statsmodels.iolib.summary2 import summary_col
|
|
from statsmodels.tools.tools import add_constant
|
|
from statsmodels.regression.linear_model import OLS
|
|
|
|
|
|
class TestSummaryLatex:
|
|
|
|
def test_summarycol(self):
|
|
# Test for latex output of summary_col object
|
|
desired = r'''
|
|
\begin{table}
|
|
\caption{}
|
|
\label{}
|
|
\begin{center}
|
|
\begin{tabular}{lll}
|
|
\hline
|
|
& y I & y II \\
|
|
\hline
|
|
const & 7.7500 & 12.4231 \\
|
|
& (1.1058) & (3.1872) \\
|
|
x1 & -0.7500 & -1.5769 \\
|
|
& (0.2368) & (0.6826) \\
|
|
R-squared & 0.7697 & 0.6401 \\
|
|
R-squared Adj. & 0.6930 & 0.5202 \\
|
|
\hline
|
|
\end{tabular}
|
|
\end{center}
|
|
\end{table}
|
|
\bigskip
|
|
Standard errors in parentheses.
|
|
'''
|
|
x = [1, 5, 7, 3, 5]
|
|
x = add_constant(x)
|
|
y1 = [6, 4, 2, 7, 4]
|
|
y2 = [8, 5, 0, 12, 4]
|
|
reg1 = OLS(y1, x).fit()
|
|
reg2 = OLS(y2, x).fit()
|
|
actual = summary_col([reg1, reg2]).as_latex()
|
|
actual = '\n%s\n' % actual
|
|
assert_equal(desired, actual)
|
|
|
|
def test_summarycol_float_format(self):
|
|
# Test for latex output of summary_col object
|
|
desired = r"""
|
|
==========================
|
|
y I y II
|
|
--------------------------
|
|
const 7.7 12.4
|
|
(1.1) (3.2)
|
|
x1 -0.7 -1.6
|
|
(0.2) (0.7)
|
|
R-squared 0.8 0.6
|
|
R-squared Adj. 0.7 0.5
|
|
==========================
|
|
Standard errors in
|
|
parentheses.
|
|
""" # noqa:W291
|
|
x = [1, 5, 7, 3, 5]
|
|
x = add_constant(x)
|
|
y1 = [6, 4, 2, 7, 4]
|
|
y2 = [8, 5, 0, 12, 4]
|
|
reg1 = OLS(y1, x).fit()
|
|
reg2 = OLS(y2, x).fit()
|
|
actual = summary_col([reg1, reg2], float_format='%0.1f').as_text()
|
|
actual = '%s\n' % actual
|
|
|
|
starred = summary_col([reg1, reg2], stars=True, float_format='%0.1f')
|
|
assert "7.7***" in str(starred)
|
|
assert "12.4**" in str(starred)
|
|
assert "12.4***" not in str(starred)
|
|
|
|
assert_equal(actual, desired)
|
|
|
|
def test_summarycol_drop_omitted(self):
|
|
# gh-3702
|
|
x = [1, 5, 7, 3, 5]
|
|
x = add_constant(x)
|
|
x2 = np.concatenate([x, np.array([[3], [9], [-1], [4], [0]])], 1)
|
|
y1 = [6, 4, 2, 7, 4]
|
|
y2 = [8, 5, 0, 12, 4]
|
|
reg1 = OLS(y1, x).fit()
|
|
reg2 = OLS(y2, x2).fit()
|
|
actual = summary_col([reg1, reg2], regressor_order=['const', 'x1'],
|
|
drop_omitted=True)
|
|
assert 'x2' not in str(actual)
|
|
actual = summary_col([reg1, reg2], regressor_order=['x1'],
|
|
drop_omitted=False)
|
|
assert 'const' in str(actual)
|
|
assert 'x2' in str(actual)
|
|
|
|
def test_summary_col_ordering_preserved(self):
|
|
# gh-3767
|
|
x = [1, 5, 7, 3, 5]
|
|
x = add_constant(x)
|
|
x2 = np.concatenate([x, np.array([[3], [9], [-1], [4], [0]])], 1)
|
|
x2 = pd.DataFrame(x2, columns=['const', 'b', 'a'])
|
|
y1 = [6, 4, 2, 7, 4]
|
|
y2 = [8, 5, 0, 12, 4]
|
|
reg1 = OLS(y1, x2).fit()
|
|
reg2 = OLS(y2, x2).fit()
|
|
|
|
info_dict = {'R2': lambda x: f'{int(x.rsquared):.3f}',
|
|
'N': lambda x: f'{int(x.nobs):d}'}
|
|
original = actual = summary_col([reg1, reg2], float_format='%0.4f')
|
|
actual = summary_col([reg1, reg2], regressor_order=['a', 'b'],
|
|
float_format='%0.4f',
|
|
info_dict=info_dict)
|
|
variables = ('const', 'b', 'a')
|
|
for line in str(original).split('\n'):
|
|
for variable in variables:
|
|
if line.startswith(variable):
|
|
assert line in str(actual)
|
|
|
|
def test__repr_latex_(self):
|
|
desired = r'''
|
|
\begin{table}
|
|
\caption{}
|
|
\label{}
|
|
\begin{center}
|
|
\begin{tabular}{lll}
|
|
\hline
|
|
& y I & y II \\
|
|
\hline
|
|
const & 7.7500 & 12.4231 \\
|
|
& (1.1058) & (3.1872) \\
|
|
x1 & -0.7500 & -1.5769 \\
|
|
& (0.2368) & (0.6826) \\
|
|
R-squared & 0.7697 & 0.6401 \\
|
|
R-squared Adj. & 0.6930 & 0.5202 \\
|
|
\hline
|
|
\end{tabular}
|
|
\end{center}
|
|
\end{table}
|
|
\bigskip
|
|
Standard errors in parentheses.
|
|
'''
|
|
x = [1, 5, 7, 3, 5]
|
|
x = add_constant(x)
|
|
y1 = [6, 4, 2, 7, 4]
|
|
y2 = [8, 5, 0, 12, 4]
|
|
reg1 = OLS(y1, x).fit()
|
|
reg2 = OLS(y2, x).fit()
|
|
|
|
actual = summary_col([reg1, reg2])._repr_latex_()
|
|
actual = '\n%s\n' % actual
|
|
assert_equal(actual, desired)
|
|
|
|
def test_OLSsummary(self):
|
|
# Test that latex output of regular OLS output still contains
|
|
# multiple tables
|
|
|
|
x = [1, 5, 7, 3, 5]
|
|
x = add_constant(x)
|
|
y1 = [6, 4, 2, 7, 4]
|
|
reg1 = OLS(y1, x).fit()
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
actual = reg1.summary().as_latex()
|
|
string_to_find = r'''\end{tabular}
|
|
\begin{tabular}'''
|
|
result = string_to_find in actual
|
|
assert (result is True)
|
|
|
|
|
|
def test_ols_summary_rsquared_label():
|
|
# Check that the "uncentered" label is correctly added after rsquared
|
|
x = [1, 5, 7, 3, 5, 2, 5, 3]
|
|
y = [6, 4, 2, 7, 4, 9, 10, 2]
|
|
reg_with_constant = OLS(y, add_constant(x)).fit()
|
|
r2_str = 'R-squared:'
|
|
with pytest.warns(UserWarning):
|
|
assert r2_str in str(reg_with_constant.summary2())
|
|
with pytest.warns(UserWarning):
|
|
assert r2_str in str(reg_with_constant.summary())
|
|
|
|
reg_without_constant = OLS(y, x, hasconst=False).fit()
|
|
r2_str = 'R-squared (uncentered):'
|
|
with pytest.warns(UserWarning):
|
|
assert r2_str in str(reg_without_constant.summary2())
|
|
with pytest.warns(UserWarning):
|
|
assert r2_str in str(reg_without_constant.summary())
|
|
|
|
|
|
class TestSummaryLabels:
|
|
"""
|
|
Test that the labels are correctly set in the summary table"""
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
y = [1, 1, 4, 2] * 4
|
|
x = add_constant([1, 2, 3, 4] * 4)
|
|
cls.mod = OLS(endog=y, exog=x).fit()
|
|
|
|
def test_summary_col_r2(self,):
|
|
# GH 6578
|
|
table = summary_col(results=self.mod, include_r2=True)
|
|
assert "R-squared " in str(table)
|
|
assert "R-squared Adj." in str(table)
|
|
|
|
def test_absence_of_r2(self,):
|
|
table = summary_col(results=self.mod, include_r2=False)
|
|
assert "R-squared" not in str(table)
|
|
assert "R-squared Adj." not in str(table)
|