59 lines
1.7 KiB
Python
59 lines
1.7 KiB
Python
import statsmodels.regression.linear_model as lm_
|
|
import statsmodels.discrete.discrete_model as dm_
|
|
import statsmodels.discrete.conditional_models as dcm_
|
|
import statsmodels.regression.mixed_linear_model as mlm_
|
|
import statsmodels.genmod.generalized_linear_model as glm_
|
|
import statsmodels.robust.robust_linear_model as roblm_
|
|
import statsmodels.regression.quantile_regression as qr_
|
|
import statsmodels.duration.hazard_regression as hr_
|
|
import statsmodels.genmod.generalized_estimating_equations as gee_
|
|
import statsmodels.gam.generalized_additive_model as gam_
|
|
|
|
gls = lm_.GLS.from_formula
|
|
wls = lm_.WLS.from_formula
|
|
ols = lm_.OLS.from_formula
|
|
glsar = lm_.GLSAR.from_formula
|
|
mixedlm = mlm_.MixedLM.from_formula
|
|
glm = glm_.GLM.from_formula
|
|
rlm = roblm_.RLM.from_formula
|
|
mnlogit = dm_.MNLogit.from_formula
|
|
logit = dm_.Logit.from_formula
|
|
probit = dm_.Probit.from_formula
|
|
poisson = dm_.Poisson.from_formula
|
|
negativebinomial = dm_.NegativeBinomial.from_formula
|
|
quantreg = qr_.QuantReg.from_formula
|
|
phreg = hr_.PHReg.from_formula
|
|
ordinal_gee = gee_.OrdinalGEE.from_formula
|
|
nominal_gee = gee_.NominalGEE.from_formula
|
|
gee = gee_.GEE.from_formula
|
|
glmgam = gam_.GLMGam.from_formula
|
|
conditional_logit = dcm_.ConditionalLogit.from_formula
|
|
conditional_mnlogit = dcm_.ConditionalMNLogit.from_formula
|
|
conditional_poisson = dcm_.ConditionalPoisson.from_formula
|
|
|
|
del lm_, dm_, mlm_, glm_, roblm_, qr_, hr_, gee_, gam_, dcm_
|
|
|
|
__all__ = [
|
|
"conditional_logit",
|
|
"conditional_mnlogit",
|
|
"conditional_poisson",
|
|
"gee",
|
|
"glm",
|
|
"glmgam",
|
|
"gls",
|
|
"glsar",
|
|
"logit",
|
|
"mixedlm",
|
|
"mnlogit",
|
|
"negativebinomial",
|
|
"nominal_gee",
|
|
"ols",
|
|
"ordinal_gee",
|
|
"phreg",
|
|
"poisson",
|
|
"probit",
|
|
"quantreg",
|
|
"rlm",
|
|
"wls",
|
|
]
|