AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/distributions/copula/transforms.py
2024-10-02 22:15:59 +04:00

239 lines
6.3 KiB
Python

""" Transformation Classes as generators for Archimedean copulas
Created on Wed Jan 27 14:33:40 2021
Author: Josef Perktold
License: BSD-3
"""
import warnings
import numpy as np
from scipy.special import expm1, gamma
class Transforms:
def __init__(self):
pass
def deriv2_inverse(self, phi, args):
t = self.inverse(phi, args)
phi_d1 = self.deriv(t, args)
phi_d2 = self.deriv2(t, args)
return np.abs(phi_d2 / phi_d1**3)
def derivk_inverse(self, k, phi, theta):
raise NotImplementedError("not yet implemented")
class TransfFrank(Transforms):
def evaluate(self, t, theta):
t = np.asarray(t)
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
val = -(np.log(-expm1(-theta*t)) - np.log(-expm1(-theta)))
return val
# return - np.log(expm1(-theta*t) / expm1(-theta))
def inverse(self, phi, theta):
phi = np.asarray(phi)
return -np.log1p(np.exp(-phi) * expm1(-theta)) / theta
def deriv(self, t, theta):
t = np.asarray(t)
tmp = np.exp(-t*theta)
return -theta * tmp/(tmp - 1)
def deriv2(self, t, theta):
t = np.asarray(t)
tmp = np.exp(theta * t)
d2 = - theta**2 * tmp / (tmp - 1)**2
return d2
def deriv2_inverse(self, phi, theta):
et = np.exp(theta)
ept = np.exp(phi + theta)
d2 = (et - 1) * ept / (theta * (ept - et + 1)**2)
return d2
def deriv3_inverse(self, phi, theta):
et = np.exp(theta)
ept = np.exp(phi + theta)
d3 = -(((et - 1) * ept * (ept + et - 1)) /
(theta * (ept - et + 1)**3))
return d3
def deriv4_inverse(self, phi, theta):
et = np.exp(theta)
ept = np.exp(phi + theta)
p = phi
b = theta
d4 = ((et - 1) * ept *
(-4 * ept + np.exp(2 * (p + b)) + 4 * np.exp(p + 2 * b) -
2 * et + np.exp(2 * b) + 1)
) / (b * (ept - et + 1)**4)
return d4
def is_completly_monotonic(self, theta):
# range of theta for which it is copula for d>2 (more than 2 rvs)
return theta > 0 & theta < 1
class TransfClayton(Transforms):
def _checkargs(self, theta):
return theta > 0
def evaluate(self, t, theta):
return np.power(t, -theta) - 1.
def inverse(self, phi, theta):
return np.power(1 + phi, -1/theta)
def deriv(self, t, theta):
return -theta * np.power(t, -theta-1)
def deriv2(self, t, theta):
return theta * (theta + 1) * np.power(t, -theta-2)
def deriv_inverse(self, phi, theta):
return -(1 + phi)**(-(theta + 1) / theta) / theta
def deriv2_inverse(self, phi, theta):
return ((theta + 1) * (1 + phi)**(-1 / theta - 2)) / theta**2
def deriv3_inverse(self, phi, theta):
th = theta # shorthand
d3 = -((1 + th) * (1 + 2 * th) / th**3 * (1 + phi)**(-1 / th - 3))
return d3
def deriv4_inverse(self, phi, theta):
th = theta # shorthand
d4 = ((1 + th) * (1 + 2 * th) * (1 + 3 * th) / th**4
) * (1 + phi)**(-1 / th - 4)
return d4
def derivk_inverse(self, k, phi, theta):
thi = 1 / theta # shorthand
d4 = (-1)**k * gamma(k + thi) / gamma(thi) * (1 + phi)**(-(k + thi))
return d4
def is_completly_monotonic(self, theta):
return theta > 0
class TransfGumbel(Transforms):
'''
requires theta >=1
'''
def _checkargs(self, theta):
return theta >= 1
def evaluate(self, t, theta):
return np.power(-np.log(t), theta)
def inverse(self, phi, theta):
return np.exp(-np.power(phi, 1. / theta))
def deriv(self, t, theta):
return - theta * (-np.log(t))**(theta - 1) / t
def deriv2(self, t, theta):
tmp1 = np.log(t)
d2 = (theta*(-1)**(1 + theta) * tmp1**(theta-1) * (1 - theta) +
theta*(-1)**(1 + theta)*tmp1**theta)/(t**2*tmp1)
# d2 = (theta * tmp1**(-1 + theta) * (1 - theta) + theta * tmp1**theta
# ) / (t**2 * tmp1)
return d2
def deriv2_inverse(self, phi, theta):
th = theta # shorthand
d2 = (phi**(2 / th) + (th - 1) * phi**(1 / th)) / (phi**2 * th**2)
d2 *= np.exp(-phi**(1 / th))
return d2
def deriv3_inverse(self, phi, theta):
p = phi # shorthand
b = theta
d3 = (-p**(3 / b) + (3 - 3 * b) * p**(2 / b) +
((3 - 2 * b) * b - 1) * p**(1 / b)
) / (p * b)**3
d3 *= np.exp(-p**(1 / b))
return d3
def deriv4_inverse(self, phi, theta):
p = phi # shorthand
b = theta
d4 = ((6 * b**3 - 11 * b**2 + 6. * b - 1) * p**(1 / b) +
(11 * b**2 - 18 * b + 7) * p**(2 / b) +
(6 * (b - 1)) * p**(3 / b) +
p**(4 / b)
) / (p * b)**4
d4 *= np.exp(-p**(1 / b))
return d4
def is_completly_monotonic(self, theta):
return theta > 1
class TransfIndep(Transforms):
def evaluate(self, t, *args):
t = np.asarray(t)
return -np.log(t)
def inverse(self, phi, *args):
phi = np.asarray(phi)
return np.exp(-phi)
def deriv(self, t, *args):
t = np.asarray(t)
return - 1./t
def deriv2(self, t, *args):
t = np.asarray(t)
return 1. / t**2
def deriv2_inverse(self, phi, *args):
return np.exp(-phi)
def deriv3_inverse(self, phi, *args):
return -np.exp(-phi)
def deriv4_inverse(self, phi, *args):
return np.exp(-phi)
class _TransfPower(Transforms):
"""generic multivariate Archimedean copula with additional power transforms
Nelson p.144, equ. 4.5.2
experimental, not yet tested and used
"""
def __init__(self, transform):
self.transform = transform
def evaluate(self, t, alpha, beta, *tr_args):
t = np.asarray(t)
phi = np.power(self.transform.evaluate(np.power(t, alpha), *tr_args),
beta)
return phi
def inverse(self, phi, alpha, beta, *tr_args):
phi = np.asarray(phi)
transf = self.transform
phi_inv = np.power(transf.evaluate(np.power(phi, 1. / beta), *tr_args),
1. / alpha)
return phi_inv