123 lines
3.4 KiB
Python
123 lines
3.4 KiB
Python
"""
|
|
Created on Fri Jan 29 19:19:45 2021
|
|
|
|
Author: Josef Perktold
|
|
License: BSD-3
|
|
|
|
"""
|
|
import numpy as np
|
|
from scipy import stats
|
|
|
|
from statsmodels.tools.rng_qrng import check_random_state
|
|
from statsmodels.distributions.copula.copulas import Copula
|
|
|
|
|
|
class IndependenceCopula(Copula):
|
|
"""Independence copula.
|
|
|
|
Copula with independent random variables.
|
|
|
|
.. math::
|
|
|
|
C_\theta(u,v) = uv
|
|
|
|
Parameters
|
|
----------
|
|
k_dim : int
|
|
Dimension, number of components in the multivariate random variable.
|
|
|
|
Notes
|
|
-----
|
|
IndependenceCopula does not have copula parameters.
|
|
If non-empty ``args`` are provided in methods, then a ValueError is raised.
|
|
The ``args`` keyword is provided for a consistent interface across
|
|
copulas.
|
|
|
|
"""
|
|
def __init__(self, k_dim=2):
|
|
super().__init__(k_dim=k_dim)
|
|
|
|
def _handle_args(self, args):
|
|
if args != () and args is not None:
|
|
msg = ("Independence copula does not use copula parameters.")
|
|
raise ValueError(msg)
|
|
else:
|
|
return args
|
|
|
|
def rvs(self, nobs=1, args=(), random_state=None):
|
|
self._handle_args(args)
|
|
rng = check_random_state(random_state)
|
|
x = rng.random((nobs, self.k_dim))
|
|
return x
|
|
|
|
def pdf(self, u, args=()):
|
|
u = np.asarray(u)
|
|
return np.ones(u.shape[:-1])
|
|
|
|
def cdf(self, u, args=()):
|
|
return np.prod(u, axis=-1)
|
|
|
|
def tau(self):
|
|
return 0
|
|
|
|
def plot_pdf(self, *args):
|
|
raise NotImplementedError("PDF is constant over the domain.")
|
|
|
|
|
|
def rvs_kernel(sample, size, bw=1, k_func=None, return_extras=False):
|
|
"""Random sampling from empirical copula using Beta distribution
|
|
|
|
Parameters
|
|
----------
|
|
sample : ndarray
|
|
Sample of multivariate observations in (o, 1) interval.
|
|
size : int
|
|
Number of observations to simulate.
|
|
bw : float
|
|
Bandwidth for Beta sampling. The beta copula corresponds to a kernel
|
|
estimate of the distribution. bw=1 corresponds to the empirical beta
|
|
copula. A small bandwidth like bw=0.001 corresponds to small noise
|
|
added to the empirical distribution. Larger bw, e.g. bw=10 corresponds
|
|
to kernel estimate with more smoothing.
|
|
k_func : None or callable
|
|
The default kernel function is currently a beta function with 1 added
|
|
to the first beta parameter.
|
|
return_extras : bool
|
|
If this is False, then only the random sample will be returned.
|
|
If true, then extra information is returned that is mainly of interest
|
|
for verification.
|
|
|
|
Returns
|
|
-------
|
|
rvs : ndarray
|
|
Multivariate sample with ``size`` observations drawn from the Beta
|
|
Copula.
|
|
|
|
Notes
|
|
-----
|
|
Status: experimental, API will change.
|
|
"""
|
|
# vectorized for observations
|
|
n = sample.shape[0]
|
|
if k_func is None:
|
|
kfunc = _kernel_rvs_beta1
|
|
idx = np.random.randint(0, n, size=size)
|
|
xi = sample[idx]
|
|
krvs = np.column_stack([kfunc(xii, bw) for xii in xi.T])
|
|
|
|
if return_extras:
|
|
return krvs, idx, xi
|
|
else:
|
|
return krvs
|
|
|
|
|
|
def _kernel_rvs_beta(x, bw):
|
|
# Beta kernel for density, pdf, estimation
|
|
return stats.beta.rvs(x / bw + 1, (1 - x) / bw + 1, size=x.shape)
|
|
|
|
|
|
def _kernel_rvs_beta1(x, bw):
|
|
# Beta kernel for density, pdf, estimation
|
|
# Kiriliouk, Segers, Tsukuhara 2020 arxiv, using bandwith 1/nobs sample
|
|
return stats.beta.rvs(x / bw, (1 - x) / bw + 1)
|