323 lines
10 KiB
Python
323 lines
10 KiB
Python
"""
|
|
Created on Fri Jan 29 19:19:45 2021
|
|
|
|
Author: Josef Perktold
|
|
Author: Pamphile Roy
|
|
License: BSD-3
|
|
|
|
"""
|
|
import numpy as np
|
|
from scipy import stats
|
|
# scipy compat:
|
|
from statsmodels.compat.scipy import multivariate_t
|
|
|
|
from statsmodels.distributions.copula.copulas import Copula
|
|
|
|
|
|
class EllipticalCopula(Copula):
|
|
"""Base class for elliptical copula
|
|
|
|
This class requires subclassing and currently does not have generic
|
|
methods based on an elliptical generator.
|
|
|
|
Notes
|
|
-----
|
|
Elliptical copulas require that copula parameters are set when the
|
|
instance is created. Those parameters currently cannot be provided in the
|
|
call to methods. (This will most likely change in future versions.)
|
|
If non-empty ``args`` are provided in methods, then a ValueError is raised.
|
|
The ``args`` keyword is provided for a consistent interface across
|
|
copulas.
|
|
|
|
"""
|
|
def _handle_args(self, args):
|
|
if args != () and args is not None:
|
|
msg = ("Methods in elliptical copulas use copula parameters in"
|
|
" attributes. `arg` in the method is ignored")
|
|
raise ValueError(msg)
|
|
else:
|
|
return args
|
|
|
|
def rvs(self, nobs=1, args=(), random_state=None):
|
|
self._handle_args(args)
|
|
x = self.distr_mv.rvs(size=nobs, random_state=random_state)
|
|
return self.distr_uv.cdf(x)
|
|
|
|
def pdf(self, u, args=()):
|
|
self._handle_args(args)
|
|
ppf = self.distr_uv.ppf(u)
|
|
mv_pdf_ppf = self.distr_mv.pdf(ppf)
|
|
|
|
return mv_pdf_ppf / np.prod(self.distr_uv.pdf(ppf), axis=-1)
|
|
|
|
def cdf(self, u, args=()):
|
|
self._handle_args(args)
|
|
ppf = self.distr_uv.ppf(u)
|
|
return self.distr_mv.cdf(ppf)
|
|
|
|
def tau(self, corr=None):
|
|
"""Bivariate kendall's tau based on correlation coefficient.
|
|
|
|
Parameters
|
|
----------
|
|
corr : None or float
|
|
Pearson correlation. If corr is None, then the correlation will be
|
|
taken from the copula attribute.
|
|
|
|
Returns
|
|
-------
|
|
Kendall's tau that corresponds to pearson correlation in the
|
|
elliptical copula.
|
|
"""
|
|
if corr is None:
|
|
corr = self.corr
|
|
if corr.shape == (2, 2):
|
|
corr = corr[0, 1]
|
|
rho = 2 * np.arcsin(corr) / np.pi
|
|
return rho
|
|
|
|
def corr_from_tau(self, tau):
|
|
"""Pearson correlation from kendall's tau.
|
|
|
|
Parameters
|
|
----------
|
|
tau : array_like
|
|
Kendall's tau correlation coefficient.
|
|
|
|
Returns
|
|
-------
|
|
Pearson correlation coefficient for given tau in elliptical
|
|
copula. This can be used as parameter for an elliptical copula.
|
|
"""
|
|
corr = np.sin(tau * np.pi / 2)
|
|
return corr
|
|
|
|
def fit_corr_param(self, data):
|
|
"""Copula correlation parameter using Kendall's tau of sample data.
|
|
|
|
Parameters
|
|
----------
|
|
data : array_like
|
|
Sample data used to fit `theta` using Kendall's tau.
|
|
|
|
Returns
|
|
-------
|
|
corr_param : float
|
|
Correlation parameter of the copula, ``theta`` in Archimedean and
|
|
pearson correlation in elliptical.
|
|
If k_dim > 2, then average tau is used.
|
|
"""
|
|
x = np.asarray(data)
|
|
|
|
if x.shape[1] == 2:
|
|
tau = stats.kendalltau(x[:, 0], x[:, 1])[0]
|
|
else:
|
|
k = self.k_dim
|
|
tau = np.eye(k)
|
|
for i in range(k):
|
|
for j in range(i+1, k):
|
|
tau_ij = stats.kendalltau(x[..., i], x[..., j])[0]
|
|
tau[i, j] = tau[j, i] = tau_ij
|
|
|
|
return self._arg_from_tau(tau)
|
|
|
|
|
|
class GaussianCopula(EllipticalCopula):
|
|
r"""Gaussian copula.
|
|
|
|
It is constructed from a multivariate normal distribution over
|
|
:math:`\mathbb{R}^d` by using the probability integral transform.
|
|
|
|
For a given correlation matrix :math:`R \in[-1, 1]^{d \times d}`,
|
|
the Gaussian copula with parameter matrix :math:`R` can be written
|
|
as:
|
|
|
|
.. math::
|
|
|
|
C_R^{\text{Gauss}}(u) = \Phi_R\left(\Phi^{-1}(u_1),\dots,
|
|
\Phi^{-1}(u_d) \right),
|
|
|
|
where :math:`\Phi^{-1}` is the inverse cumulative distribution function
|
|
of a standard normal and :math:`\Phi_R` is the joint cumulative
|
|
distribution function of a multivariate normal distribution with mean
|
|
vector zero and covariance matrix equal to the correlation
|
|
matrix :math:`R`.
|
|
|
|
Parameters
|
|
----------
|
|
corr : scalar or array_like
|
|
Correlation or scatter matrix for the elliptical copula. In the
|
|
bivariate case, ``corr` can be a scalar and is then considered as
|
|
the correlation coefficient. If ``corr`` is None, then the scatter
|
|
matrix is the identity matrix.
|
|
k_dim : int
|
|
Dimension, number of components in the multivariate random variable.
|
|
allow_singular : bool
|
|
Allow singular correlation matrix.
|
|
The behavior when the correlation matrix is singular is determined by
|
|
`scipy.stats.multivariate_normal`` and might not be appropriate for
|
|
all copula or copula distribution metnods. Behavior might change in
|
|
future versions.
|
|
|
|
Notes
|
|
-----
|
|
Elliptical copulas require that copula parameters are set when the
|
|
instance is created. Those parameters currently cannot be provided in the
|
|
call to methods. (This will most likely change in future versions.)
|
|
If non-empty ``args`` are provided in methods, then a ValueError is raised.
|
|
The ``args`` keyword is provided for a consistent interface across
|
|
copulas.
|
|
|
|
References
|
|
----------
|
|
.. [1] Joe, Harry, 2014, Dependence modeling with copulas. CRC press.
|
|
p. 163
|
|
|
|
"""
|
|
|
|
def __init__(self, corr=None, k_dim=2, allow_singular=False):
|
|
super().__init__(k_dim=k_dim)
|
|
if corr is None:
|
|
corr = np.eye(k_dim)
|
|
elif k_dim == 2 and np.size(corr) == 1:
|
|
corr = np.array([[1., corr], [corr, 1.]])
|
|
|
|
self.corr = np.asarray(corr)
|
|
self.args = (self.corr,)
|
|
self.distr_uv = stats.norm
|
|
self.distr_mv = stats.multivariate_normal(
|
|
cov=corr, allow_singular=allow_singular)
|
|
|
|
def dependence_tail(self, corr=None):
|
|
"""
|
|
Bivariate tail dependence parameter.
|
|
|
|
Joe (2014) p. 182
|
|
|
|
Parameters
|
|
----------
|
|
corr : any
|
|
Tail dependence for Gaussian copulas is always zero.
|
|
Argument will be ignored
|
|
|
|
Returns
|
|
-------
|
|
Lower and upper tail dependence coefficients of the copula with given
|
|
Pearson correlation coefficient.
|
|
"""
|
|
|
|
return 0, 0
|
|
|
|
def _arg_from_tau(self, tau):
|
|
# for generic compat
|
|
return self.corr_from_tau(tau)
|
|
|
|
|
|
class StudentTCopula(EllipticalCopula):
|
|
"""Student t copula.
|
|
|
|
Parameters
|
|
----------
|
|
corr : scalar or array_like
|
|
Correlation or scatter matrix for the elliptical copula. In the
|
|
bivariate case, ``corr` can be a scalar and is then considered as
|
|
the correlation coefficient. If ``corr`` is None, then the scatter
|
|
matrix is the identity matrix.
|
|
df : float (optional)
|
|
Degrees of freedom of the multivariate t distribution.
|
|
k_dim : int
|
|
Dimension, number of components in the multivariate random variable.
|
|
|
|
Notes
|
|
-----
|
|
Elliptical copulas require that copula parameters are set when the
|
|
instance is created. Those parameters currently cannot be provided in the
|
|
call to methods. (This will most likely change in future versions.)
|
|
If non-empty ``args`` are provided in methods, then a ValueError is raised.
|
|
The ``args`` keyword is provided for a consistent interface across
|
|
copulas.
|
|
|
|
References
|
|
----------
|
|
.. [1] Joe, Harry, 2014, Dependence modeling with copulas. CRC press.
|
|
p. 181
|
|
"""
|
|
|
|
def __init__(self, corr=None, df=None, k_dim=2):
|
|
super().__init__(k_dim=k_dim)
|
|
if corr is None:
|
|
corr = np.eye(k_dim)
|
|
elif k_dim == 2 and np.size(corr) == 1:
|
|
corr = np.array([[1., corr], [corr, 1.]])
|
|
|
|
self.df = df
|
|
self.corr = np.asarray(corr)
|
|
self.args = (corr, df)
|
|
# both uv and mv are frozen distributions
|
|
self.distr_uv = stats.t(df=df)
|
|
self.distr_mv = multivariate_t(shape=corr, df=df)
|
|
|
|
def cdf(self, u, args=()):
|
|
raise NotImplementedError("CDF not available in closed form.")
|
|
# ppf = self.distr_uv.ppf(u)
|
|
# mvt = MVT([0, 0], self.corr, self.df)
|
|
# return mvt.cdf(ppf)
|
|
|
|
def spearmans_rho(self, corr=None):
|
|
"""
|
|
Bivariate Spearman's rho based on correlation coefficient.
|
|
|
|
Joe (2014) p. 182
|
|
|
|
Parameters
|
|
----------
|
|
corr : None or float
|
|
Pearson correlation. If corr is None, then the correlation will be
|
|
taken from the copula attribute.
|
|
|
|
Returns
|
|
-------
|
|
Spearman's rho that corresponds to pearson correlation in the
|
|
elliptical copula.
|
|
"""
|
|
if corr is None:
|
|
corr = self.corr
|
|
if corr.shape == (2, 2):
|
|
corr = corr[0, 1]
|
|
|
|
tau = 6 * np.arcsin(corr / 2) / np.pi
|
|
return tau
|
|
|
|
def dependence_tail(self, corr=None):
|
|
"""
|
|
Bivariate tail dependence parameter.
|
|
|
|
Joe (2014) p. 182
|
|
|
|
Parameters
|
|
----------
|
|
corr : None or float
|
|
Pearson correlation. If corr is None, then the correlation will be
|
|
taken from the copula attribute.
|
|
|
|
Returns
|
|
-------
|
|
Lower and upper tail dependence coefficients of the copula with given
|
|
Pearson correlation coefficient.
|
|
"""
|
|
if corr is None:
|
|
corr = self.corr
|
|
if corr.shape == (2, 2):
|
|
corr = corr[0, 1]
|
|
|
|
df = self.df
|
|
t = - np.sqrt((df + 1) * (1 - corr) / 1 + corr)
|
|
# Note self.distr_uv is frozen, df cannot change, use stats.t instead
|
|
lam = 2 * stats.t.cdf(t, df + 1)
|
|
return lam, lam
|
|
|
|
def _arg_from_tau(self, tau):
|
|
# for generic compat
|
|
# this does not provide an estimate of df
|
|
return self.corr_from_tau(tau)
|