111 lines
2.4 KiB
Python
111 lines
2.4 KiB
Python
"""
|
|
|
|
Special functions for copulas not available in scipy
|
|
|
|
Created on Jan. 27, 2023
|
|
"""
|
|
|
|
import numpy as np
|
|
from scipy.special import factorial
|
|
|
|
|
|
class Sterling1():
|
|
"""Stirling numbers of the first kind
|
|
"""
|
|
# based on
|
|
# https://rosettacode.org/wiki/Stirling_numbers_of_the_first_kind#Python
|
|
|
|
def __init__(self):
|
|
self._cache = {}
|
|
|
|
def __call__(self, n, k):
|
|
key = str(n) + "," + str(k)
|
|
|
|
if key in self._cache.keys():
|
|
return self._cache[key]
|
|
if n == k == 0:
|
|
return 1
|
|
if n > 0 and k == 0:
|
|
return 0
|
|
if k > n:
|
|
return 0
|
|
result = sterling1(n - 1, k - 1) + (n - 1) * sterling1(n - 1, k)
|
|
self._cache[key] = result
|
|
return result
|
|
|
|
def clear_cache(self):
|
|
"""clear cache of Sterling numbers
|
|
"""
|
|
self._cache = {}
|
|
|
|
|
|
sterling1 = Sterling1()
|
|
|
|
|
|
class Sterling2():
|
|
"""Stirling numbers of the second kind
|
|
"""
|
|
# based on
|
|
# https://rosettacode.org/wiki/Stirling_numbers_of_the_second_kind#Python
|
|
|
|
def __init__(self):
|
|
self._cache = {}
|
|
|
|
def __call__(self, n, k):
|
|
key = str(n) + "," + str(k)
|
|
|
|
if key in self._cache.keys():
|
|
return self._cache[key]
|
|
if n == k == 0:
|
|
return 1
|
|
if (n > 0 and k == 0) or (n == 0 and k > 0):
|
|
return 0
|
|
if n == k:
|
|
return 1
|
|
if k > n:
|
|
return 0
|
|
result = k * sterling2(n - 1, k) + sterling2(n - 1, k - 1)
|
|
self._cache[key] = result
|
|
return result
|
|
|
|
def clear_cache(self):
|
|
"""clear cache of Sterling numbers
|
|
"""
|
|
self._cache = {}
|
|
|
|
|
|
sterling2 = Sterling2()
|
|
|
|
|
|
def li3(z):
|
|
"""Polylogarithm for negative integer order -3
|
|
|
|
Li(-3, z)
|
|
"""
|
|
return z * (1 + 4 * z + z**2) / (1 - z)**4
|
|
|
|
|
|
def li4(z):
|
|
"""Polylogarithm for negative integer order -4
|
|
|
|
Li(-4, z)
|
|
"""
|
|
return z * (1 + z) * (1 + 10 * z + z**2) / (1 - z)**5
|
|
|
|
|
|
def lin(n, z):
|
|
"""Polylogarithm for negative integer order -n
|
|
|
|
Li(-n, z)
|
|
|
|
https://en.wikipedia.org/wiki/Polylogarithm#Particular_values
|
|
"""
|
|
if np.size(z) > 1:
|
|
z = np.array(z)[..., None]
|
|
|
|
k = np.arange(n+1)
|
|
st2 = np.array([sterling2(n + 1, ki + 1) for ki in k])
|
|
res = (-1)**(n+1) * np.sum(factorial(k) * st2 * (-1 / (1 - z))**(k+1),
|
|
axis=-1)
|
|
return res
|